Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Eine Besonderheit bilden waagrechte und senkrechte Geraden.
    • senkrechte Gerade werden durch die Gleichung "x = c" beschrieben
    • waagrechte Gerade werden durch die Gleichung "y = c" beschrieben.

    Beachte, dass die Gleichung der senkrechten Gerade keine Funktionsgleichung ist und somit weder ein y-Achsenabschnitt noch eine Steigung angegeben werden kann. Das ist schon daran erkennbar, dass hier Punkte des Graphen "übereinander" liegen, was bei einer Funktion nicht vorkommen darf.

Überprüfe JEDE Aussage auf Richtigkeit.

graphik
Die abgebildete Gerade
 
hat die Gleichung y
=
5
2
 
hat die Steigung m
=
5
2
 
genügt der Gleichung x
=
5
2
 
hat den y-Achsenabschnitt
 
n
=
5
2
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.

Lernvideo
Lineare Funktionen (Teil 1)
Lernvideo
Lineare Funktionen (Teil 2)

Mit zunehmenden x-Werten
  • nehmen auch die y-Werte zu, falls die Gerade steigt,
  • nehmen die y-Werte ab, falls die Gerade fällt,
  • sind die y-Werte konstant, falls die Gerade parallel zur x-Achse verläuft.
Für x = 0 ergibt sich
  • ein positiver y-Wert, falls die Gerade die y-Achse oberhalb der x-Achse schneidet,
  • ein negativer y-Wert, falls die Gerade die y-Achse unterhalb der x-Achse schneidet,
  • der y-Wert 0, falls die Gerade durch den Ursprung geht.
Eine lineare Funktion mit der Gleichung y = m·x + n ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und n der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.
  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel 1
Welche Informationen lassen sich bzgl. der Steigung m und des y-Achsen-Abschnitts n ablesen?
graphik
Beispiel 2
Bestimme zeichnerisch: Welchen y-Achsenabschnitt besitzt die Gerade g, die durch den Punkt (-3 ; -1) geht und parallel ist zur Geraden h mit der Gleichung y = 1 − 0,25x ?
Beispiel 3
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Gegeben ist die Gleichung einer Geraden. Um sie zu zeichnen, benötigt man zwei Punkte. Diese erhält man z.B., indem man zwei unterschiedliche x-Werte in die Gleichung einsetzt und die zugehörigen y-Werte ausrechnet. Praktischer Weise sollte man mit x=0 anfangen (wenig Rechenaufwand; der zugehörige y-Wert ist der y-Achsenabschnitt).
Beispiel
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Jede nicht senkrechte Gerade und damit jede lineare Zuordnung kann durch eine Gleichung ähnlich

y = 1/3 x + 1

beschrieben werden.
Beispiel
Beschreibe die drei Geraden jeweils durch eine Gleichung von der Art y = ? · x + ?.
graphik
- - - - - - - - - - - Schwarz:
Für x = 0 ergibt sich y = -2, also hat der Summand am Ende des Terms den Wert -2.
graphik
Am sogenannten Steigungsdreieck erkannt man: Nimmt x um 2 Einheiten zu, so nimmt y um 3 Einheiten zu, also hat der Faktor vor x den Wert 3/2 .
y
=
3
2
 
x
2
- - - - - - - - - - - Grün:
Für x = 0 ergibt sich y = -1, also hat der Summand am Ende des Terms den Wert -1.
graphik
Nimmt x um 2 Einheiten zu, so nimmt y um 1 Einheit ab, also hat der Faktor vor x den Wert -1/2 ("Minus" da "abnehmend").
y
=
1
2
 
x
1
- - - - - - - - - - - Orange:
y ist immer 0,5 (unabhängig von x), also lautet die Gleichung y = 0,5 (das heißt der Faktor vor x hat den Wert 0).
Um den Funktionsterm einer abgebildeten Geraden zu ermitteln, gehe wie folgt vor:
  1. Der y-Achsenabschnitt lässt sich direkt aus dem Schnittpunkt der Geraden mit der y-Achse ablesen.
  2. Suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten. Die Breite des Dreiecks ergibt den Nenner, die Höhe des Dreiecks den Zähler der Steigung.
  3. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.
Beispiel
Lies jeweils die genauen Werte für m und n ab:
graphik
Eine Besonderheit bilden waagrechte und senkrechte Geraden.
  • senkrechte Gerade werden durch die Gleichung "x = c" beschrieben
  • waagrechte Gerade werden durch die Gleichung "y = c" beschrieben.

Beachte, dass die Gleichung der senkrechten Gerade keine Funktionsgleichung ist und somit weder ein y-Achsenabschnitt noch eine Steigung angegeben werden kann. Das ist schon daran erkennbar, dass hier Punkte des Graphen "übereinander" liegen, was bei einer Funktion nicht vorkommen darf.

Beispiel
Gib für die eingezeichneten Geraden sowie für die x-und y-Achse eine Geradengleichung an:
graphik