Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Urnenmodell - Kombinatorik, Matheübungen
Ziehen hintereinander mit/ohne Zurücklegen und Ziehen mit einem Griff. Berechnung von Mächtigkeiten und Wahrscheinlichkeiten mit Hilfe geeigneterFormeln. - Lehrplan für 5.-13. Klasse - 25 Aufgaben in 5 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe ansehen
Hilfe zum Thema
Im
Urnenmodell
wird ein Behälter (Urne) benutzt, um Laplace-Experimente zu modellieren. Dazu wird die Urne mit einer bestimmten Anzahl Kugeln gefüllt, die bis auf eine Eigenschaft (z.B. Farbe) nicht unterscheidbar sind. Beim zufälligen Ziehen einer Kugel aus der Urne sollen alle Kugeln dieselbe Auswahlwahrscheinlichkeit haben. Es gibt die Unterscheidungen "Ziehen mit/ohne Zurücklegen" und "mit/ohne Beachtung der Reihenfolge" der gezogenen Kugeln.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 3
Bestimme jeweils die Wahrscheinlichkeit der angegebenen Ereignisse! Ergebnis(se) mit 2 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
Zwischenschritte aktiviert
Ein Computerladen bietet für einen Smartphonevertrag vier verschiedene Versicherungsarten (Basis, Standard, Komplett, Neuwert), drei verschiedene Vertragslaufzeiten (drei, sechs und zwölf Monate) und fünf verschiedene Datenvolumina (1GB, 5GB, 10GB, 20GB und 50GB) an. Ein sorgloser Kunde wählt eine Kombination aus Versicherung, Laufzeit und Datenvolumen zufällig aus.
a) Wie groß ist die Wahrscheinlichkeit, dass er eine Kombination über 10GB Datenvolumen auswählt? ▉
b) Wie groß ist die Wahrscheinlichkeit, dass er eine Neuwertversicherung mit dem Smartphone abschliesst? ▉
c) Wie groß ist die Wahrscheinlichkeit, dass er 20GB Datenvolumen und eine sechsmonatige Laufzeit auswählt? ▉
Schritt 1 von 4
Es gibt
verschiedene Vertragsvarianten.
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema
Stoff zum Thema anzeigen
Was ist das Urnenmodell in der Stochastik und wie wird es verwendet?
#1217
Im
Urnenmodell
wird ein Behälter (Urne) benutzt, um Laplace-Experimente zu modellieren. Dazu wird die Urne mit einer bestimmten Anzahl Kugeln gefüllt, die bis auf eine Eigenschaft (z.B. Farbe) nicht unterscheidbar sind. Beim zufälligen Ziehen einer Kugel aus der Urne sollen alle Kugeln dieselbe Auswahlwahrscheinlichkeit haben. Es gibt die Unterscheidungen "Ziehen mit/ohne Zurücklegen" und "mit/ohne Beachtung der Reihenfolge" der gezogenen Kugeln.
Beispiel 1
Beim Lottospiel "6 aus 49" kann ein Spieler auf bis zu sechs richtige Zahlen getippt haben (Minimum: null). Konzipiere für die Zufallsgröße "Anzahl Richtiger" ein passendes Urnenmodell.
Beispiel 2
Eine Urne enthält fünf Kugeln, die mit 1, 2, 3, 4 und 5 beschriftet sind. Aus dieser Urne wird zweimal eine Kugel gezogen und die entstehende zweistellige Zahl (1. Kugel Zehnerstelle, 2. Kugel Einerstelle) notiert.
Bestimme jeweils die Anzahl der möglichen zweistelligen Zahlen, wenn
a) die gezogene Kugel wieder zurückgelegt wird,
b) die gezogene Kugel nicht wieder zurückgelegt wird.
c) Wie viele Möglichkeiten gibt es bei a) und b) für die Ziehung eines Pasches?
Beispiel 3
Eine Urne enthält fünf Kugeln, die mit 1, 2, 3, 4 und 5 beschriftet sind. Aus dieser Urne wird zweimal eine Kugel gezogen und die entstehende zweistellige Zahl (1. Kugel Zehnerstelle, 2. Kugel Einerstelle) notiert.
Wie groß ist die Wahrscheinlichkeit, dass ...
a) ... beim Ziehen mit Zurücklegen eine Zahl über 50 gezogen wird?
b) ... beim Ziehen ohne Zurücklegen die Zahl 15 gezogen wird?
Beispiel 4
Aus einer Pralinenschachtel mit 20 unterschiedlichen Pralinen werden mit einem Griff acht Pralinen entnommen.
a) Gib ein passendes Urnenmodell an!
b) Auf wie viele verschiedene Arten ist dies möglich?
Beispiel 5
In einer vollen Schachtel Pralinen befinden sich zwölf Marzipan-Pralinen und acht Schoko-Pralinen. Es werden mit einem Griff acht Pralinen entnommen. Wie groß ist die Wahrscheinlichkeit, dass sich unter den entnommenen Pralinen genau drei Marzipan-Pralinen befinden?
Titel
×
...
Schließen
Speichern
Abbrechen