a · b + a · c = a · (b + c)
(x+y) · b + (x+y) · c = (x+y) · (b + c)
Wird zu einer Gleichung eine Grundmenge G angegeben, so muss die gesuchte Lösung in dieser Grundmenge enthalten sein - ansonsten gibt es keine Lösung. Die Lösungsmenge L enthält alle Lösungen der Gleichung. Gibt es keine Lösung, so ist sie leer.
(Ebenso mit − statt +)
Von einer allgemeingültigen Gleichung spricht man, wenn jede Zahl aus der Grundmenge zu einer wahren Aussage führt. Die Lösungsmenge stimmt also mit der Grundmenge überein.
Von einer nicht erfüllbaren Gleichung spricht man, wenn keine Zahl aus der Grundmenge die Gleichung erfüllt. Die Lösungsmenge ist dann die leere Menge. Man schreibt: L = { }
Senkrechte Striche um einen Term bedeuten "Betrag des Termwerts". Ist der Termwert positiv, so haben die Betragstriche keine Auswirkung. Ist er negativ, so wird er durch die Betragstriche positiv.
Wenn man weiß, was der Term T(x) ausdrückt (z.B. den Flächeninhalt einer bestimmten Figur) oder wenn er nicht zu kompliziert ist, kann man sich seine graphische Veranschaulichung auch ohne Rechnung in etwa vorstellen.
Z.B. T(x) = 1000 : x. Je kleiner x desto größer der Termwert. Also hat man von links (kleine x-Werte) nach rechts (große x-Werte) auf jeden Fall eine fallende Kurve. Genauere Aussagen erhält man durch Rechnung.