Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Eine Kugel mit dem Radius r besitzt
    • das Volumen V = 4/3 · r³ · π
    • den Oberflächeninhalt O = 4 · r² · π
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 8
  • Die gefärbte Figur wird um die Achse a gedreht. Berechne die Oberfläche des Rotationskörpers . Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • graphik
    O ≈
     
     ▉ 
     
    cm
    2
    Schritt 1 von 3
    Ansatz zur Berechnung der Oberfläche. Gib passende Faktoren ein, z.B. "1" bzw. "2" wenn die Fläche einfach bzw. doppelt vorkommt, "0" wenn sie gar nicht vorkommt, "-1" wenn sie abzuziehen ist.
    O
    ges
    =
    ·
    Deckfläche Zylinder
    +
    ·
    Mantelfläche Zylinder
    +
    ·
    Oberfläche Kugel
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie berechnet man das Volumen eines Kegels und welcher andere Körper verwendet die gleiche Formel?
#737
Das Volumen eines Kegels hängt nur von seiner Grundfläche G und seiner Höhe h ab, und zwar

V = ⅓ · G · h

Das ist die selbe Formel wie bei der Pyramide. Man kann sich den Kegel dazu als Pyramide vorstellen, deren Grundfläche ein regelmäßiges n-Eck mit unendlich vielen Ecken ist.

Wie berechnet man das Volumen und die Oberfläche einer Kugel?
#502
Eine Kugel mit dem Radius r besitzt
  • das Volumen V = 4/3 · r³ · π
  • den Oberflächeninhalt O = 4 · r² · π
Beispiel 1
In einer Schachtel (Leergewicht 75 g) stecken 1000 kleine Eisenkugeln (Dichte von Eisen: 7,874 g/cm³) mit einem Durchmesser von jeweils 1 cm. Wie viel wiegt die volle Schachtel?
Beispiel 2
Die gefärbte Figur wird um die Achse a gedreht. Berechne Volumen und Oberfläche des Rotationskörpers.
graphik
Beispiel
Bestimme den Abstand des Punktes P(-5|3) von der Geraden y=3x-1 mit Hilfe von Pythagoras und quadratischer Ergänzung.
Wie löst man Extremwertaufgaben in vier Schritten?
#658
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
  1. Darstellung der zu optimierenden Größe als Term
  2. Term in Abhängigkeit von einer Variable (z.B. "x") darstellen
  3. Term in Nullstellen- oder Scheitelpunktform umwandeln
  4. Extremwert und zugehöriges "x" bestimmen
Beispiel
Einem gleichschenkligen Dreieck mit der Basislänge 4 und der Höhe 3,5 ist ein Rechteck einbeschrieben. Bestimme Länge und Breite des Rechtecks mit dem maximalen Flächeninhalt.
Wie löst man Extremwertaufgaben in vier Schritten?
#889
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
  1. Darstellung der zu optimierenden Größe als Term
  2. Term in Abhängigkeit von x angeben
  3. Term umformen mithilfe der quadratischen Ergänzung.
  4. Extremwert und zugehöriges x ablesen.
Beispiel
Auf der Geraden 
g:
 
y
=
2x
1
 liegen die Punkte 
A
n
 
x
 
|
 
2x
1
 die mit B(0|4) die Strecken 
A
n
 
B
 bilden. Für welchen Wert von x ist 
c
=
A
n
 
B
 minimal? Wie lang ist dann 
c
min
?
Was sagt es über ein Dreieck aus, wenn die Summe der Quadrate zweier Seiten gleich dem Quadrat der dritten Seite ist?
#902
Gilt in einem Dreieck mit den Seiten a,b und c die Gleichung

c2 = a2 + b2,

so handelt es sich um ein rechtwinkliges Dreieck mit den beiden Katheten a und b und der Hypotenuse c.