Die Graphen mancher Funktionen weisen an bestimmten Stellen ihrer Definitionsmenge Sprünge auf. Man nennt die Funktion dann an solchen Stellen unstetig (ansonsten stetig). Ist eine Funktion an jeder definierten Stelle stetig, so nennt man sie (insgesamt) stetig.

Bei den bisher behandelten Funktionstypen (ganzrational, gebrochen-rational, exponentiell, trigonometrisch) handelt es sich um stetige Funktionen. Dagegen ist z.B. die Rundungsfunktion, die jeder reellen Zahl den auf Ganze gerundeten Wert zuordnet, nicht stetig (siehe Abbildung).

Erläuterung: "Knödel" und "Kringel" verdeutlichen, ob der jew. Punkt zum Graphen G gehört oder nicht. Z.B. gilt (0,5|0) ∉ G, aber (0,5|1) ∈ G (weil bei 0,5 auf 1 aufgerundet wird).

Weitere Tausende Mathe-Aufgaben...

  • Bei uns findest du Online-Übungen zu fast allen Themen der Klassen 5-12.
  • Aufgaben direkt im Browser bearbeiten und lösen.
  • Für die Fächer Mathematik, Latein, Englisch, Chemie und Physik.
Online-Übungen und Aufgaben Zum Aufgabenbereich

Und ganz nebenbei: Mathegym wurde ausgezeichnet mit dem "Deutschen Bildungs-Award 2022". Damit belegen wir erneut den 1. Platz bei einem Mathe-Lernportal-Vergleich. Weitere Infos

Gesamtsieger Lernportale Mathe, Deutscher Bildungs-Award 2022