Hilfe
  • Die durch y = ax² (a≠0) definierte Parabel hat den Scheitel im Ursprung und ist gegenüber der Normalparabel in y-Richtung um das |a|-fache gestreckt (|a|>1) oder gestaucht (|a|<1). Das Vorzeichen von a legt fest, ob die Parabel nach oben (a positiv) oder nach unten (a negativ) geöffnet ist.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Betrachte die abgebildete Parabel (orange) mit der Gleichung y = ax². Was lässt sich über den Formfaktor a aussagen? Zum Vergleich ist auch die Normalparabel abgebildet.

  • graphik
    a
    >
    0
     
       
    a
    <
    0
    a
    >
    1
     
       
     
    a
    =
    1
     
       
    a
    <
    1
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was lässt sich über die Graphen der Funktionen folgender Gleichungen jeweils aussagen: y = x², y = (x + 2)², y = x² + 2, y = (x - 1)² + 3?
#230
  • y = x²:
    Normalparabel mit Scheitel S im Ursprung
  • y = (x + 2)²:
    Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
  • y = x² + 2:
    Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
  • y = (x − 1)² + 3:
    Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.
Was sagt der Graph der Funktion y = ax² (a≠0) über die Form der Parabel aus?
#232

Die durch y = ax² (a≠0) definierte Parabel hat den Scheitel im Ursprung und ist gegenüber der Normalparabel in y-Richtung um das |a|-fache gestreckt (|a|>1) oder gestaucht (|a|<1). Das Vorzeichen von a legt fest, ob die Parabel nach oben (a positiv) oder nach unten (a negativ) geöffnet ist.

Beispiel
Neben der Normalparabel (grau) sind drei verschiedene Parabeln mit der Gleichung y = ax² dargestellt. Lies jeweils das Vorzeichen von a ab und gib an, ob |a|>1 oder |a|<1.
graphik
Wie bestimmt man den Formparameter a einer Parabel, wenn die Gleichung bis auf diesen bekannt ist?
#233
Die Gleichung einer Parabel sei bis auf den Formfaktor a bekannt. Dann lässt sich a bestimmen, indem man einen Punkt des Graphen aus dem Koordinatensystem abliest, ihn in die Parabelgleichung einsetzt und die Gleichung nach a auflöst.
Beispiel
graphik
Wie beeinflussen die Parameter a, xS und yS die Form und Lage einer Parabel mit der Gleichung y = a⋅(x - xS)² + yS?
#913
Durch die Gleichung y = a⋅(x - xS)² + yS (a≠0) ist eine Parabel mit den Scheitelkoordinaten xS und yS gegeben, die gegenüber der Normalparabel mit der Gleichung y = x²
  • nach unten geöffnet ist, falls a negativ ist und
  • evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Beispiel
Abgebildet ist die Parabel mit der Gleichung
y
=
a
·
x
x
S
2
+
y
S
Bestimme a, 
x
S
 und 
y
S
.
graphik