Hilfe
  • Lassen sich Basis und Argument des Logarithmus als Potenz derselben Basis schreiben, so kann man den Logrithmuswert ohne Taschenrechner bestimmen.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme ohne Taschenrechner.

  • log
    8
     
    1
    4
    =
    ?
    Schritt 1/5
    Sowohl Basis als auch Argument lassen sich als Potenz mit Basis schreiben.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Exponentialgleichung und Logarithmus
Lernvideo

Exponentialgleichung und Logarithmus

Kanal: Mathegym
Logarithmus Rechenregeln
Lernvideo

Logarithmus Rechenregeln

Kanal: Mathegym

Was ist eine Exponentialgleichung und wie wird sie gelöst?
#358
Die Exponentialgleichung (Exponent gesucht!)   bx = a    besitzt die Lösung   x = logb a.

Gesprochen: "Logarithmus von a zur Basis b"

Was bedeutet log_b a und wie berechnet man es?
#353
Um  logb a ohne Taschenrechner zu ermitteln, muss man fragen: "b hoch wieviel ist a?"

Beispiel: log3 9 = 2, weil 32 = 9

Wie berechnet man log_b a mit einem Taschenrechner, der nur eine 'log'-Taste hat?
#356
Um logb a zu berechnen, gib in den Taschenrechner ein:

log a : log b

Beispiel
Löse die Gleichung:
4
x
1
:
9
=
3
2
x
·
2
x
Wie lässt sich eine Exponentialgleichung der Form b^{T_1(x)} = b^{T_2(x)} lösen?
#368
Liegt die Exponentialgleichung in der Form

bT1(x) = bT2(x)    [ T1(x) und T2(x) sind x-Terme ]

vor, so kann x auch ohne Logarithmus gelöst werden. Setze dazu einfach gleich:

T1(x) = T2(x)

Wie kann man einen Logarithmus umformen, wenn das Argument eine Potenz ist?
#355
logb ar = r · logb a

Die Regel ist viele Schülern unter "Lasso-Regel" geläufig, da man den Exponenten sozusagen mit einem Lasso einfängt und vor das "r" stellt.

Wie kann man log_b(a) ohne Taschenrechner bestimmen, wenn Basis und Argument als Potenzen derselben Basis darstellbar sind?
#359
Lassen sich Basis und Argument des Logarithmus als Potenz derselben Basis schreiben, so kann man den Logrithmuswert ohne Taschenrechner bestimmen.
Beispiel
log
4
 
1
8
=
?
Wie löst man die Gleichung log_b a = c, wenn a oder b gesucht sind?
#851
Sind in der Gleichung

logb a = c

a oder b gesucht, so übersetzt man sie in die Exponentialgleichung

bc = a

und löst im Fall "b gesucht" noch nach b auf.
Wie löst man eine Exponentialgleichung, wenn nur eine Potenz mit x vorkommt?
#997
Exponentialgleichungen, in denen nur eine Potenz (und sonst kein weiteres x) vorkommt, lassen sich in die Form

aT(x)=b

bringen [mit T(x) ist ein x-Term wie z.B. x+3 gemeint]. Sofern b>0, kann man anschließend auf beiden Seiten den Logarithmus zur Basis a anwenden, womit man die Gleichung

T(x)=logab

erhält, die nach x aufgelöst werden kann.
Beispiel
Löse die Gleichung.
12 000
·
1,06
x
3
=
10
5
Wie kann man Summen oder Differenzen von Potenzen mit x im Exponenten vereinfachen?
#998
Um Summen oder Differenzen von Potenzen (mit x im Exponent) zu vereinfachen, kann man versuchen, mit Hilfe der Potenzregeln gleiche Potenzen herzustellen.
Beispiel
Löse die Exponentialgleichung.
4
x
+
1
=
4
x
1
2
+
7
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.

  • B(n) gesucht:
  • Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
    B(n) = B(0) · kn

  • n gesucht:
  • Ist n gesucht, löst man die Formel nach n auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn | log
    log( B(n) / B(0) ) = log( kn)
    log( B(n) / B(0) ) = n · log( k ) | : log( k )
    n = log( B(n) / B(0) ) / log( k )

  • B(0) gesucht:
  • Ist B(0) gesucht, löst man die Formel nach B(0) auf:
    B(n) = B(0) · kn | : kn
    B(0) = B(n) / kn

  • k gesucht:
    Ist k gesucht, löst man die Formel nach k auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn
    Zuletzt zieht man noch die n-te Wurzel
Beispiel
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.