Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
1.3 Irrationale Zahlen, Matheübungen
- Lehrwerk Lambacher Schweizer (5.-9. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Unterscheide folgende Zahlenmengen:
N
= {1, 2, 3, ...}
Menge der natürliche Zahlen
Z
= {0, ±1, ±2, ±3, ...}
Menge der ganze Zahlen; enthält über
N
hinaus auch noch 0 und die negativen (ganzen) Zahlen
Q
= {p/q | p ∈
Z
, q ∈
N
}
Menge der rationalen Zahlen; enthält über
Z
hinaus auch noch alle (nicht ganzzahligen) Brüche
R
Menge der
reellen Zahlen
; enthält über
Q
hinaus auch noch alle
irrationalen
Zahlen wie z.B. √2 oder π
Gib die kleinste Zahlenmenge an, zu der die Zahl gehört.
2
·
3
N
Z
Q
R
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Was sind reelle Zahlen und welche Zahlenarten gehören dazu?
#878
Zu den reellen Zahlen ℝ gehören alle
rationalen
Zahlen ℚ und alle
irrationalen
Zahlen.
Rationale Zahlen
kann man als endlichen Bruch darstellen. Als Dezimalzahl haben sie keine, endlich viele Nachkommastellen oder die Nachkommastellen wiederholen sich periodisch.
Irrationale Zahlen
kann man nicht als endlichen Bruch darstellen. Als Dezimalzahl haben sie unendlich viele Nachkommastellen, die sich nicht periodisch wiederholen.
Beispiel
Welche der reellen Zahlen sind rational, welche irrational?
3
3
5
2
0,1
6
2
≈
1,4142135...
Was sind die Zahlenmengen N, Z, Q und R und wie unterscheiden sie sich?
#627
Unterscheide folgende Zahlenmengen:
N
= {1, 2, 3, ...}
Menge der natürliche Zahlen
Z
= {0, ±1, ±2, ±3, ...}
Menge der ganze Zahlen; enthält über
N
hinaus auch noch 0 und die negativen (ganzen) Zahlen
Q
= {p/q | p ∈
Z
, q ∈
N
}
Menge der rationalen Zahlen; enthält über
Z
hinaus auch noch alle (nicht ganzzahligen) Brüche
R
Menge der
reellen Zahlen
; enthält über
Q
hinaus auch noch alle
irrationalen
Zahlen wie z.B. √2 oder π
Titel
×
...
Schließen
Speichern
Abbrechen