Hilfe
  • Wenn zwei sich schneidende Geraden von zwei Parallelen geschnitten werden, spricht man von einer V-Figur, wenn sie wie folgt aussieht:

    Es gelten die Strahlensätze (e und f parallel):

    1. Strahlensatz
    Abschnitte der beiden Strahlen werden zueinander in Beziehung gesetzt:
    a : g = c : h
    a : b = c : d

    2. Strahlensatz
    Seitenlängen des kleinen und des großen Dreiecks werden zueinander in Beziehung gesetzt:
    a : g = e : f
    c : h = e : f

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme x in der V-Figur mit zwei parallelen Geraden. Brüche in der Form "a/b" angeben.

  • Skizze:
    graphik
    x
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie lauten die Verhältnisgleichungen gemäß der Strahlensätze?
#890
Wenn zwei sich schneidende Geraden von zwei Parallelen geschnitten werden, spricht man von einer V-Figur, wenn sie wie folgt aussieht:

Es gelten die Strahlensätze (e und f parallel):

1. Strahlensatz
Abschnitte der beiden Strahlen werden zueinander in Beziehung gesetzt:
a : g = c : h
a : b = c : d

2. Strahlensatz
Seitenlängen des kleinen und des großen Dreiecks werden zueinander in Beziehung gesetzt:
a : g = e : f
c : h = e : f

Beispiel 1
Skizze (nicht maßstabsgetreu):
graphik
Berechne x.
Beispiel 2
Skizze (nicht maßstabsgetreu):
graphik
Berechne x.
Wie lauten die Verhältnisgleichungen gemäß der Strahlensätze bei einer X-Figur?
#891
Wenn zwei sich schneidende Geraden von zwei Parallelen geschnitten werden, spricht man von einer X-Figur, wenn sie wie folgt aussieht:

Es gelten die Strahlensätze (e und f parallel):

1. Strahlensatz
Abschnitte der beiden Strahlen werden zueinander in Beziehung gesetzt:
a : b = c : d
a : g = c : h

2. Strahlensatz
Abschnitte eines Strahls werden zu den parallelen Abschnitten in Beziehung gesetzt:
a : b = e : f
c : d = e : f