Hilfe
  • Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 2 in Level 2
  • Löse die Aufgabe Schritt für Schritt.
  • Die folgende Tabelle enthält die in Deutschland registrierten Corona-Infektionen im Zeitraum 29. Okt 2021 bis 15. Apr 2022.
    29. Okt
    4.577.488
    05. Nov
    4.733.479
    12. Nov
    4.974.112
    19. Nov
    5.293.087
    26. Nov
    5.695.206
    03. Dez
    6.097.477
    10. Dez
    6.463.737
    17. Dez
    6.757.593
    24. Dez
    6.982.228
    31. Dez
    7.176.448
    07. Jan
    7.458.396
    14. Jan
    7.885.229
    21. Jan
    8.535.962
    28. Jan
    9.524.101
    04. Feb
    11.778.829
    11. Feb
    12.196.991
    18. Feb
    13.360.578
    25. Feb
    14.504.151
    04. Mär
    15.579.480
    11. Mär
    16.881.948
    18. Mär
    18.424.575
    25. Mär
    20.018.465
    01. Apr
    21.459.975
    08. Apr
    22.534.061
    15. Apr
    23.365.504
    Quelle: statista.com
    a) Entwickle mithilfe des ersten und letzten Datensatzes eine exponentielle Modellfunktion f(x) mit 
    x
    =
    Anzahl der Wochen seit dem 29. Okt 2021.
    b) Stelle der exponentiellen Modellfunktion eine lineare Modellfunktion g(x) gegenüber (aus denselben zwei Datensätzen gewonnen).
    c) Kopiere die Tabellenwerte in ein Tabellenkalkulationsprogramm und erstelle auf dieser Grundlage ein Diagramm, das die tatsächliche Entwicklung der Infektionszahlen, die exponentielle und die lineare Modellierung (als Funktionsgraph) wiedergibt.
    Schritt 1 von 4
    Wenn der 29. Okt 2021 der Woche 
    x
    =
    0
     entspricht, dann entspricht der 15. April 2022 der Woche 
    x
    =
    .
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich.
Stoff zum Thema (+Video)
Exponentialgleichung und Logarithmus
Lernvideo

Exponentialgleichung und Logarithmus

Kanal: Mathegym

Beispiel
Löse die Gleichung:
4
x
1
:
9
=
3
2
x
·
2
x
Wie löst man eine Exponentialgleichung, wenn nur eine Potenz mit x vorkommt?
#997
Exponentialgleichungen, in denen nur eine Potenz (und sonst kein weiteres x) vorkommt, lassen sich in die Form

aT(x)=b

bringen [mit T(x) ist ein x-Term wie z.B. x+3 gemeint]. Sofern b>0, kann man anschließend auf beiden Seiten den Logarithmus zur Basis a anwenden, womit man die Gleichung

T(x)=logab

erhält, die nach x aufgelöst werden kann.
Beispiel
Löse die Gleichung.
12 000
·
1,06
x
3
=
10
5
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.

  • B(n) gesucht:
  • Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
    B(n) = B(0) · kn

  • n gesucht:
  • Ist n gesucht, löst man die Formel nach n auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn | log
    log( B(n) / B(0) ) = log( kn)
    log( B(n) / B(0) ) = n · log( k ) | : log( k )
    n = log( B(n) / B(0) ) / log( k )

  • B(0) gesucht:
  • Ist B(0) gesucht, löst man die Formel nach B(0) auf:
    B(n) = B(0) · kn | : kn
    B(0) = B(n) / kn

  • k gesucht:
    Ist k gesucht, löst man die Formel nach k auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn
    Zuletzt zieht man noch die n-te Wurzel
Beispiel
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.
Was sind Halbwertszeit und Verdoppelungszeit und wie werden sie definiert?
#346
Verdoppelungszeit tD nennt man die (bei exponentiellem Wachstum konstante) Zeit, in der sich der Bestand verdoppelt.

Halbwertszeit tH nennt man die (bei exponentieller Abnahme konstante) Zeit, in der sich der Bestand halbiert.

Wie lässt sich eine Exponentialgleichung der Form b^{T_1(x)} = b^{T_2(x)} lösen?
#368
Liegt die Exponentialgleichung in der Form

bT1(x) = bT2(x)    [ T1(x) und T2(x) sind x-Terme ]

vor, so kann x auch ohne Logarithmus gelöst werden. Setze dazu einfach gleich:

T1(x) = T2(x)

Wie kann man Summen oder Differenzen von Potenzen mit x im Exponenten vereinfachen?
#998
Um Summen oder Differenzen von Potenzen (mit x im Exponent) zu vereinfachen, kann man versuchen, mit Hilfe der Potenzregeln gleiche Potenzen herzustellen.
Beispiel
Löse die Exponentialgleichung.
4
x
+
1
=
4
x
1
2
+
7