Hilfe
  • Die drei Binomischen Formeln (BF) lauten in der Rückwärtsversion:

    1. a² + 2ab + b² = (a + b)²
    2. a² − 2ab + b² = (a − b)²
    3. a² − b² = (a + b) (a − b)

    In dieser Richtung (links ohne Klammer, rechts mit) ermöglichen die Formeln, eine Summe oder Differenz in ein Produkt umzuformen ("faktorisieren"). Hier ist es wichtig, dass man den linken Term erst einmal überprüft: Liegt die passende Struktur für eine BF vor? Eine Probe (andere Richtung) gibt Gewissheit.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Faktorisiere mit Hilfe einer passenden binomischen Formel bzw. gib "!" an, falls es unmöglich ist. Brüche sind in der Form a/b einzugeben.

  • x
    2
    4
    9
    =
    ·
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Quadratwurzeln - Rationalmachen des Nenners
Lernvideo

Quadratwurzeln - Rationalmachen des Nenners

Kanal: Mathegym

Was sind die drei binomischen Formeln und wofür werden sie verwendet?
#264

Die drei Binomischen Formeln (BF) lauten:

  1. (a + b)² = a² + 2ab + b²
  2. (a − b)² = a² − 2ab + b²
  3. (a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
Beispiel
Multipliziere.
6
 
x
+
2
 
y
2
=
?
a
3
3
 
b
2
=
?
d
+
2
 
3
·
d
2
 
3
=
?
Was sind die rückwärts gerichteten binomischen Formeln und wie werden sie angewendet?
#266

Die drei Binomischen Formeln (BF) lauten in der Rückwärtsversion:

  1. a² + 2ab + b² = (a + b)²
  2. a² − 2ab + b² = (a − b)²
  3. a² − b² = (a + b) (a − b)

In dieser Richtung (links ohne Klammer, rechts mit) ermöglichen die Formeln, eine Summe oder Differenz in ein Produkt umzuformen ("faktorisieren"). Hier ist es wichtig, dass man den linken Term erst einmal überprüft: Liegt die passende Struktur für eine BF vor? Eine Probe (andere Richtung) gibt Gewissheit.

Beispiel
Faktorisiere (wenn möglich).
49x
2
4
9
=
?
Beispiel
Ergänze:
20y
+
4y
2
=
2
Was bedeutet Rationalmachen des Nenners und wie wird es durchgeführt?
#270
Rationalmachen des Nenners bedeutet, einen Bruch so umzuformen, dass der Nenner wurzelfrei ist. Meistens erreicht man das durch Erweitern:
  • steht √a im Nenner, so erweitert man mit √a
  • steht √a + √b im Nenner, so erweitert man mit √a − √b (3. binomische Formel)
Beispiel
Mache die Nenner rational.
2
3
=
?
 
     
 
5
3
+
5
=
?
Beispiel
Vereinfache:
25a
4
30a
2
+
9