Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
1.6 gebrochen-rationale Funktionen: vom Term zu Graphenskizze, Matheübungen
- Lehrplan (im Aufbau)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Beispielaufgabe
+Video
Gute Anhaltspunkte für eine genaue Zeichnung des Funktionsgraphen liefern folgende Untersuchungen (
Kurvendiskussion
):
maximale Definitionsmenge
Punkt- und Achsensymmetrie
Schnittpunkte mit x- und y-Achse
Verhalten an den Rändern des Definitionsbereichs/Asymptoten
relative Extremwerte/Monotonieverhalten
Wendepunkte/Krümmungsverhalten
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Untersuche f so weit, dass du den Graphen skizzieren kannst. (Polynomdivision sollte bekannt sein)
Zwischenschritte aktiviert
Für diese Aufgabe müssen Zwischenschritte aktiviert sein
f
x
=
2
−
3x
+
x
−
2
x
2
Schritt 1/9
Definitionsmenge
IR
IR \ {2/3}
IR \ {2}
IR \ {0}
IR \ {3/2}
Symmetrie
...bzgl. y-Achse
...bzgl. Ursprung
keine Symmetrie zum Koordinatensystem
Verhalten an der Definitionslücke
Loch im Graphen
Polstelle mit VZW -/+
...mit VZW +/-
...ohne VZW -/-
...ohne VZW +/+
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Was sind die wesentlichen Aspekte einer vollständigen Funktionsuntersuchung?
#481
Gute Anhaltspunkte für eine genaue Zeichnung des Funktionsgraphen liefern folgende Untersuchungen (
Kurvendiskussion
):
maximale Definitionsmenge
Punkt- und Achsensymmetrie
Schnittpunkte mit x- und y-Achse
Verhalten an den Rändern des Definitionsbereichs/Asymptoten
relative Extremwerte/Monotonieverhalten
Wendepunkte/Krümmungsverhalten
Beispiel 1
Untersuche die Funktion f hinsichtlich max. Derfinitionsmenge, Nullstellen, Schnittpunkt mit der y-Achse, Verhalten an den Rändern des Definitionsbereichs, Asymptoten, relative Hoch- und Tiefpunkte, Monotonieverhalten, Wendepunkte und Krümmungsverhalten. Skizziere den Graphen und gib die Wertemenge an.
a)
f
x
=
x
2
+
2x
+
1
x
+
3
b)
f
x
=
0,5x
−
3
+
2
x
−
1
Hinweis: b) ohne Wendpunkt, Krümmung und Wertemenge
Beispiel 2
Diskutiere hinsichtlich maximaler Definitionsmenge, Symmetrie zum Koordinatensystem, Nullstellen, Verhalten in der Umgebung der Definitionslücke, Verhalten im Unendlichen, Extremwerte und Monotonie und skizziere den Graphen.
a)
f
x
=
x
2
−
8x
+
16
x
3
−
x
2
−
12x
b)
f
x
=
x
2
+
x
x
−
1
Titel
×
...
Schließen
Speichern
Abbrechen