Hilfe
  • Hilfe zum Thema
    Gegeben ist ein Dreieck ABC, in dem die Winkel α, β und γ den Seiten a, b und c gegenüberliegen. Nach dem Kosinussatz gilt:

    a² = b² + c² − 2bc · cos(α)

    b² = a² + c² − 2ac · cos(β)

    c² = a² + b² − 2ab · cos(γ)

    Am besten, man merkt sich den Satz so:

    "(beliebige) Seite zum Quadrat = Summe der anderen beiden Seitenquadrate minus 2 mal Produkt dieser Seiten mal cos vom Zwischenwinkel"

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Berechne den fehlenden Winkel mit Hilfe des Kosinussatzes. Ergebnis(se) mit 2 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • Skizze:
     
    graphik
    α ≈
     
     
    °
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Wie lautet der Kosinussatz und wie wird er angewendet?
#648
Gegeben ist ein Dreieck ABC, in dem die Winkel α, β und γ den Seiten a, b und c gegenüberliegen. Nach dem Kosinussatz gilt:

a² = b² + c² − 2bc · cos(α)

b² = a² + c² − 2ac · cos(β)

c² = a² + b² − 2ab · cos(γ)

Am besten, man merkt sich den Satz so:

"(beliebige) Seite zum Quadrat = Summe der anderen beiden Seitenquadrate minus 2 mal Produkt dieser Seiten mal cos vom Zwischenwinkel"

Beispiel
Das folgende Video zeigt anhand eines Beispiels, wie man den Kosinussatz anwendet.