Hilfe
  • Die drei Binomischen Formeln (BF) lauten in der Rückwärtsversion:

    1. a² + 2ab + b² = (a + b)²
    2. a² − 2ab + b² = (a − b)²
    3. a² − b² = (a + b) (a − b)

    In dieser Richtung (links ohne Klammer, rechts mit) ermöglichen die Formeln, eine Summe oder Differenz in ein Produkt umzuformen ("faktorisieren"). Hier ist es wichtig, dass man den linken Term erst einmal überprüft: Liegt die passende Struktur für eine BF vor? Eine Probe (andere Richtung) gibt Gewissheit.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Faktorisiere mit Hilfe einer passenden binomischen Formel bzw. gib "!" an, falls es unmöglich ist.

  • 36
    +
    12c
    +
    c
    2
    =
    2
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was sind die drei binomischen Formeln und wofür werden sie verwendet?
#264

Die drei Binomischen Formeln (BF) lauten:

  1. (a + b)² = a² + 2ab + b²
  2. (a − b)² = a² − 2ab + b²
  3. (a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
Beispiel 1
Multipliziere.
a
+
1
2
=
?
3
b
2
=
?
11
+
c
·
11
c
=
?
Beispiel 2
Multipliziere.
3
7
+
y
2
=
?
1,5x
2
3
2
=
?
q
2
+
1
6
·
q
2
1
6
=
?
Beispiel 3
Berechne mithilfe der binomischen Formeln ohne Taschenrechner:
53
2
=
?
29
2
=
?
38
·
42
=
?
Beispiel 4
Vereinfache soweit wie möglich.
2c
5d
2
c
5
·
3d
=
?
Was sind die rückwärts gerichteten binomischen Formeln und wie werden sie angewendet?
#266

Die drei Binomischen Formeln (BF) lauten in der Rückwärtsversion:

  1. a² + 2ab + b² = (a + b)²
  2. a² − 2ab + b² = (a − b)²
  3. a² − b² = (a + b) (a − b)

In dieser Richtung (links ohne Klammer, rechts mit) ermöglichen die Formeln, eine Summe oder Differenz in ein Produkt umzuformen ("faktorisieren"). Hier ist es wichtig, dass man den linken Term erst einmal überprüft: Liegt die passende Struktur für eine BF vor? Eine Probe (andere Richtung) gibt Gewissheit.

Beispiel
Faktorisiere (wenn möglich).
49x
2
4
9
=
?
Beispiel
Ergänze:
20y
+
4y
2
=
2
Wie löst man zwei eingeklammerte Terme auf, die jeweils nur Plusrechnungen enthalten und miteinander multipliziert werden?
#123
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel
b
2
3
 
b
·
6a
·
a
30%
+
1
2
 
a
2
·
b
4ab
ab
2
Wie bestimmt man die Anzahl der Summanden und die höchsten Potenzen der Variablen nach dem Ausmultiplizieren von Produkten mehrerer Summen von x-Potenzen?
#426
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
  • Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
  • Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Beispiel
Wie viele Summanden ergeben sich nach dem Ausmultiplizieren und welche höchsten Variablenpotenzen?
x
+
2
y
2
·
2y
5
x
5x
2
+
1
3
·
x
+
1
·
y
3
Was ist der Unterschied zwischen dem Assoziativgesetz und dem Distributivgesetz?
#425
Unterscheide zwischen
  • a · (b · c) = a · b · c   (A-Gesetz)
  • a · (b + c) = a · b + a · c   (D-Gesetz)