Hilfe
  • Hilfe zum Thema
    Spezialfall der Kettenregel:
    Innere Funktion ist linear
    f(x) = h(mx+c)
    f´(x) = m · h´(mx+c)
    Einige Ableitungen:
    f(x) = ex, f´(x) = ex
    f(x) = sin(x), f´(x) = cos(x)
    f(x) = cos(x), f´(x) = -sin(x)
    f(x) = xn, f´(x) = n xn-1
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 7 in Level 6
  • Gemischte Aufgaben (Polynom-, Exponential-, sin- und cos-Funktion).
    Leite mit der Kettenregel ab. Brüche in der Form "a/b" eingeben.
  • f
     
    x
    =
    2
    ·
    e
    3x
    f '
     
    x
    =
    ·
    e
     
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Was ist die Ableitung der natürlichen Exponentialfunktion?
#1208
Die Ableitung der natürlichen Exponentialfunktion ist (wieder) die natürliche Exponentialfunktion.
Was besagt die Produktregel in der Differentialrechnung?
#330
Produktregel:

Wenn f(x) = u(x)⋅v(x) dann ist f (x) = u(x)⋅v(x) + v(x)⋅u(x)

Wann und wie wird die Kettenregel in der Mathematik angewendet?
#329
Kettenregel:

Wenn f(x) = g( h(x) ), dann ist f (x) = g( h(x) )⋅h(x)

Wie funktioniert die Ableitung bei verketteten Funktionen und speziellen Funktionen?
#705
Spezialfall der Kettenregel:
Innere Funktion ist linear
f(x) = h(mx+c)
f´(x) = m · h´(mx+c)
Einige Ableitungen:
f(x) = ex, f´(x) = ex
f(x) = sin(x), f´(x) = cos(x)
f(x) = cos(x), f´(x) = -sin(x)
f(x) = xn, f´(x) = n xn-1
Wie verhalten sich die Funktionen x^n und e^x für x → ∞ und x → −∞?
#553
Die natürliche Exponentialfunktion verändert sich wesentlich schneller als jede Potenzfunktion. Daher gilt:
  • für x → −∞ strebt das Produkt aus ex und xn gegen 0
  • für x → ∞ strebt der Quotient aus xn und ex gegen 0
  • für x → ∞ strebt die Differenz aus ex und xn gegen ∞