Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.2 ...speziell Verschiebung von Hyperbeln, Matheübungen
Elementare gebrochen-rationale Funktionen, Bruchterme und Bruchgleichungen - Lehrwerk mathe.delta (5.-9. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Ermittle die Asymptoten des Graphen von g und überlege, wie diese von der x-Achse bzw. y-Achse aus verschoben sind.
Beispielaufgabe
Der Parameter a im Term einer gebrochen-rationalen Funktion mit der Gleichung y=a/x kann eine Streckung in y-Richtung und eine Spiegelung an der x-Achse bewirken (siehe Beispiel).
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Beschreibe, wie sich aus dem Graphen von f der Graph von g ergibt.
Zwischenschritte aktivieren
Wähle alle erforderlichen Veränderungen aus, mit denen man aus dem grünen Graphen den blauen Graphen erhält.
Streckung in y-Richtung …
… um den Faktor
0,25
0,5
1,5
2
2,5
3
Spiegelung an der x-Achse
Verschiebung in
positive x-Richtung …
negative x-Richtung …
… um
0,5
1
1,5
2
2,5
3
Einheit(en).
Verschiebung in
positive y-Richtung …
negative y-Richtung …
… um
0,5
1
1,5
2
2,5
3
Einheit(en).
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema
Wie beeinflussen die Parameter b und c den Graphen einer gebrochen-rationalen Funktion y=a/(x+b)+c?
#837
Der Parameter b im Term einer elementaren gebrochen-rationalen Funktion mit der Gleichung y=a/(x+b)+c bewirkt eine Verschiebung entlang der x-Achse, der Parameter c eine Verschiebung entlang der y-Achse (siehe Beispiel).
Beispiel
Den Graphen der Funktion g mit dem Term
g(x)
=
a
x
+
b
+
c
erhält man aus dem Graphen der Funktion f mit dem Term
f(x)
=
a
x
durch
Verschiebung um |b| in
negative
x-Richtung, falls b
positiv
ist, bzw.
Verschiebung um |b| in
positive
x-Richtung, falls b
negativ
ist,
und durch
Verschiebung um |c| in positive y-Richtung, falls c positiv ist, bzw.
Verschiebung um |c| in negative y-Richtung, falls c negativ ist.
Die Form der Hyperbel ändert sich dabei nicht, solange der Zähler des Bruchterms gleich bleibt (hier a).
Aufgabenbeispiel:
Beschreibe, wie der Graph von g aus dem Graphen von f mit dem Term
f(x)
=
1
x
hervorgeht, und gib einen passenden Funktionsterm für g an.
Wie beeinflusst der Parameter a den Graphen der Funktion y=a/x?
#838
Der Parameter a im Term einer gebrochen-rationalen Funktion mit der Gleichung y=a/x kann eine Streckung in y-Richtung und eine Spiegelung an der x-Achse bewirken (siehe Beispiel).
Beispiel
Den Graphen der Funktion g mit dem Term
g(x)
=
a
x
erhält man aus dem Graphen der Funktion f mit dem Term
f(x)
=
1
x
durch
Streckung um den Faktor |a| in y-Richtung und,
falls a negativ ist, durch Spiegelung an der x-Achse.
Aufgabenbeispiel:
Beschreibe, wie der Graph von g aus dem Graphen von f mit dem Term
f(x)
=
1
x
hervorgeht, und gib einen passenden Funktionsterm für g an.
Wie leitet man den Funktionsterm einer gebrochen-rationalen Funktion aus ihrem Graphen ab?
#839
Anhand der Asymptoten und mithilfe eines Punkts des Graphen kann man bei elementaren gebrochen-rationalen Funktionen vom Graphen auf den Funktionsterm schließen (siehe Beispiel).
Beispiel
Für elementare gebrochen-rationale Funktionen kann man aus einem gegebenen Graphen auf den zugehörigen Funktionsterm der Form
f(x)
=
a
x
+
b
+
c
schließen, indem man …
… die senkrechte und die waagrechte Asymptote am Graphen abliest,
… damit im Funktionsterm die Werte der Paramter b und c festlegt,
… einen Punkt des Graphen abliest und die Koordinaten dieses Punkts in den Funktionsterm einsetzt ("Punktprobe")
… und die entstehende Gleichung nach dem Parameter a auflöst, um auch dessen Wert zu bestimmen.
Den gesuchten Funktionsterm erhält man schließlich durch Einsetzen der Werte von a, b und c in den allgemeinen Funktionsterm.
Aufgabenbeispiel:
Bestimme den zum Graphen passenden Funktionsterm.
Titel
×
...
Schließen
Speichern
Abbrechen