Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.2 Terme zu Wachstums und Zerfallsfunktionen, Matheübungen
- Lehrplan (im Aufbau)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Hilfe speziell zu dieser Aufgabe
Die Beträge der einzugebenden Zahlen ergeben in der Summe 1341.
Beispielaufgabe
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.
B(n) gesucht:
Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
B(n) = B(0) · k
n
n gesucht:
Ist n gesucht, löst man die Formel nach n auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
| log
log( B(n) / B(0) ) = log( k
n
)
log( B(n) / B(0) ) = n · log( k ) | : log( k )
n = log( B(n) / B(0) ) / log( k )
B(0) gesucht:
Ist B(0) gesucht, löst man die Formel nach B(0) auf:
B(n) = B(0) · k
n
| : k
n
B(0) = B(n) / k
n
k gesucht:
Ist k gesucht, löst man die Formel nach k auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
Zuletzt zieht man noch die n-te Wurzel
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu dieser Aufgabe" unterhalb der Aufgabe.
Berechne. Runde sinnvoll, passend zum Antwortsatz.
Bei Alinas Geburt legen ihre Eltern für sie 1000 € auf einem Sparkonto zu einem jährlichen Zinssatz von 1,5% an.
Auf welchen Betrag wird das Kapital bis zu ihrem 18. Geburtstag anwachsen?
Kapital auf dem Sparbuch an Alinas 18. Geburtstag:
Euro
Cent
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.
B(n) gesucht:
Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
B(n) = B(0) · k
n
n gesucht:
Ist n gesucht, löst man die Formel nach n auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
| log
log( B(n) / B(0) ) = log( k
n
)
log( B(n) / B(0) ) = n · log( k ) | : log( k )
n = log( B(n) / B(0) ) / log( k )
B(0) gesucht:
Ist B(0) gesucht, löst man die Formel nach B(0) auf:
B(n) = B(0) · k
n
| : k
n
B(0) = B(n) / k
n
k gesucht:
Ist k gesucht, löst man die Formel nach k auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
Zuletzt zieht man noch die n-te Wurzel
Beispiel
Ein Kapital von 2000 € vermehrt sich auf einem Sparkonto pro Jahr um 0,1%.
Nach 8 Jahren beträgt das Kapital auf dem Konto:
?
Euro
?
Cent
Wie hängen Wachstumsrate und Wachstumsfaktor beim exponentiellen Wachstum zusammen?
#345
Wachstumsrate = Wachstumsfaktor a − 1
Nimmt ein Bestand pro Zeitschritt
um
20% (= Rate) zu, so hat er sich
auf
120% (= a) des ursprünglichen Bestands vergößert.
Nimmt ein Bestand pro Zeitschritt
um
20% (Rate) ab, so hat er sich
auf
80% (= a) des ursprünglichen Bestands verringert.
Ansonsten bedenke, dass 80% = 0,8 und 120% = 1,2.
Beispiel
Wie lautet der Wachstumsfaktor (bezogen auf das angegebene Zeitintervall)
bei einer monatlichen Zunahme um die Hälfte
bei einer jährlichen Abnahme um ein Viertel
bei einem täglichen Rückgang um 1,5%
Titel
×
...
Schließen
Speichern
Abbrechen