Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.3 Exponentialfunktion: Errechnen verschiedener gesuchter Anfangsgrößen, Matheübungen
- Lehrplan (im Aufbau) - 22 Aufgaben in 4 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Hilfe zum Thema
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.
B(n) gesucht:
Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
B(n) = B(0) · k
n
n gesucht:
Ist n gesucht, löst man die Formel nach n auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
| log
log( B(n) / B(0) ) = log( k
n
)
log( B(n) / B(0) ) = n · log( k ) | : log( k )
n = log( B(n) / B(0) ) / log( k )
B(0) gesucht:
Ist B(0) gesucht, löst man die Formel nach B(0) auf:
B(n) = B(0) · k
n
| : k
n
B(0) = B(n) / k
n
k gesucht:
Ist k gesucht, löst man die Formel nach k auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
Zuletzt zieht man noch die n-te Wurzel
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 8
in Level 4
Hinweis: Auf dieser Stufe findest du vermischte Übungen zu den verschiedenen Aufgabentypen des exponentiellen Wachstums.
Zu seinem 30. Geburtstag am 1. Januar legt Herr Sparsam 5500 € zu einem Zinssatz von 2,3% an.
Auf welchen Betrag wird das Kapital bis zu seinem Renteneintritt mit 65 Jahren anwachsen?
Kapital auf dem Sparbuch an Herrn Sparsams 65. Geburtstag:
Euro
Cent
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Was ist der allgemeine Term einer Exponentialfunktion und welche Bedeutung haben die Parameter?
#350
Funktionen mit der Gleichung f(x) = b · a
x
heißen
Exponentialfunktionen
. Dabei ist
a > 0 der Wachstumsfaktor und
b = f(0) der Anfangsbestand
Beispiel
Ein zu festem Jahreszinssatz angelegtes Kapital ist innerhalb von 10 Jahren auf 300% angewachsen. Wie hoch ist der Zinsatz?
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.
B(n) gesucht:
Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
B(n) = B(0) · k
n
n gesucht:
Ist n gesucht, löst man die Formel nach n auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
| log
log( B(n) / B(0) ) = log( k
n
)
log( B(n) / B(0) ) = n · log( k ) | : log( k )
n = log( B(n) / B(0) ) / log( k )
B(0) gesucht:
Ist B(0) gesucht, löst man die Formel nach B(0) auf:
B(n) = B(0) · k
n
| : k
n
B(0) = B(n) / k
n
k gesucht:
Ist k gesucht, löst man die Formel nach k auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
Zuletzt zieht man noch die n-te Wurzel
Beispiel
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.
Titel
×
...
Schließen
Speichern
Abbrechen