Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Die Quersumme der gesuchten Zahl lautet 11.
  • Setze den Wachstumsfaktor a und einen gegebenen Punkt (d.h. den bekannten Bestand zu einem bestimmten Zeitpunkt) in die allgemeine Gleichung y = b · ax ein und löse nach b auf.

Gib gerundet auf ganze Zahlen an.

  • Ein mit 4,2% / Jahr verzinstes Kapital ist (einschließlich Zinseszins) nach 5 Jahren auf 79 845,78 € angewachsen.
    Das Anfangskapital betrug
     
     
    Euro
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was ist der allgemeine Term einer Exponentialfunktion und welche Bedeutung haben die Parameter?
#350
Funktionen mit der Gleichung f(x) = b · ax heißen Exponentialfunktionen. Dabei ist
  • a > 0 der Wachstumsfaktor und
  • b = f(0) der Anfangsbestand
Beispiel
Ein zu festem Jahreszinssatz angelegtes Kapital ist innerhalb von 10 Jahren auf 300% angewachsen. Wie hoch ist der Zinsatz?
Wie lautet die korrekte Reihenfolge beim Berechnen eines Termwerts?
#250

Klammer vor Potenz vor Punkt (mal und geteilt) vor Strich (plus und minus).

Ansonsten wird von links nach rechts gerechnet!

Beispiel
Erstelle einen Gliederungsbaum zu folgendem Term:
102
:
2
·
17
·
2
+
2
5
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.

  • B(n) gesucht:
  • Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
    B(n) = B(0) · kn

  • n gesucht:
  • Ist n gesucht, löst man die Formel nach n auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn | log
    log( B(n) / B(0) ) = log( kn)
    log( B(n) / B(0) ) = n · log( k ) | : log( k )
    n = log( B(n) / B(0) ) / log( k )

  • B(0) gesucht:
  • Ist B(0) gesucht, löst man die Formel nach B(0) auf:
    B(n) = B(0) · kn | : kn
    B(0) = B(n) / kn

  • k gesucht:
    Ist k gesucht, löst man die Formel nach k auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn
    Zuletzt zieht man noch die n-te Wurzel