Hilfe
  • Wenn von einem Punkt auf der Geraden nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

    Wenn von einem Punkt auf der Geraden nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Die Punkte liegen alle auf der gegebenen Geraden. Ergänze die fehlenden Werte. Brüche sind in der Form "a/b" bzw. "-a/b" einzugeben.

  • Gerade:
     
    y
    =
    1
    3
    ·
    x
    +
    2
    Punkte:
    P
     
    1
     
    |
    Q
     
    0
     
    |
    R
     
     
    |
     
    5
    S
     
     
    |
     
    4
    3
    Erinnerung: runden nicht erlaubt! Gib Brüche wie oben gefordert exakt an.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lineare Funktionen - Graph und Funktionsterm
Lernvideo

Lineare Funktionen - Graph und Funktionsterm

Kanal: Mathegym
 
Lernvideo

Kanal: Mathegym intern

Wie berechnet man die Steigung einer Geraden mit zwei gegebenen Punkten?
#151
Ist eine Gerade g durch zwei Punkte A(x1|y1) und B(x2|y2) gegeben, so kann man ihre Steigung m so berechnen:
  1. Berechne die Differenz der y-Werte beider Punkte, also Δy = y2 − y1.
  2. Berechne ebenso die Differenz der x-Werte beider Punkte, also Δx = x2 − x1.
  3. Der Bruch Δy / Δx ergibt die Steigung m.
Beispiel
Ermittle die Steigung der Gerade, die durch die Punkte (-1,5 | 2,5) und (0 | -3) geht.
Wie berechnet man den y-Achsenabschnitt einer Geraden, wenn die Steigung und ein Punkt bekannt sind?
#634
Ist eine Gerade g durch ihre Steigung m und einen beliebigen Punkt P ∈ g gegeben, so kann man den y-Achsenabschnitt b leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + b (für m setze die bekannte Steigung ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten b auf.
Beispiel
Wo schneidet die Gerade, die durch 
m
=
1,6
 und P(2|−0,5) gegeben ist, die y-Achse?
Wie berechnet man die Steigung einer Geraden mit bekanntem y-Achsenabschnitt und einem gegebenen Punkt?
#654
Ist eine Gerade g durch ihren y-Achsenabschnitt b und einen beliebigen Punkt P ∈ g gegeben, so kann man die Steigung m leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + b (für b setze den bekannten y-Achsenabschnitt ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten m auf.
Beispiel
Welche Steigung hat die Gerade, deren Achsenabschnitt b = 2,5 ist und die durch den Punkt P(2 | -0,5) verläuft?
Wie lautet die Geradengleichung?
Wie bestimmt man die Gleichung einer Geraden aus zwei gegebenen Punkten?
#635
Ist eine Gerade durch zwei Punkte gegeben, so geht man wie folgt vor, um ihre Gleichung, sprich m und b, zu ermitteln:
  1. Bestimme zunächst die Steigung m = Δy / Δx .
  2. Setze dann in die Gleichung y = m·x + b die Koordinaten von einem der beiden Punkte ein und löse die Gleichung nach b auf.
Beispiel
Ermittle die Gleichung der Geraden g, die durch die Punkte P1(−3|2) und P2(5|−4) geht.
Wie berechnet man die fehlende Koordinate eines Punktes auf einer Geraden, wenn eine Koordinate bekannt ist?
#650
Wenn von einem Punkt auf der Geraden nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

Wenn von einem Punkt auf der Geraden nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.
Beispiel
Die beiden Punkte liegen auf der Geraden. Berechne die fehlenden Werte.
Gerade:
 
y
=
3
·
x
1
Punkte:
P
 
2
 
|
 
?
Q
 
?
 
|
 
14
Wie kann man rechnerisch überprüfen, ob ein Punkt auf einer Geraden liegt?
#646
Um zu überprüfen, ob ein Punkt P(x | y) auf der Geraden liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
Beispiel
Liegt der Punkt P auf der Geraden g?
Gerade:
 
y
=
2
·
x
+
5
Punkt:
 
P
 
3
 
|
 
10