Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.4 Natürlicher Logarithmus, Matheübungen
Natürliche Exponentialfunktion - Fundamente der Mathematik (11.-13. Klasse) - 20 Aufgaben in 4 Levels
Hilfe
Hilfe zum Thema
e
x
und ln(x) kehren sich gegenseitig um. Z.B. gilt
e
0
=1 und ln(1)=0
e
1
=e und ln(e)=1
Allgemein gilt also e
lnx
= ln(e
x
) = x.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 1
Vereinfache ohne Taschenrechner. Gib Brüche in der Form a/b an.
e
3
ln2
=
Ergebnis prüfen
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie sind die Funktionen e^x und ln(x) miteinander verbunden?
#1210
e
x
und ln(x) kehren sich gegenseitig um. Z.B. gilt
e
0
=1 und ln(1)=0
e
1
=e und ln(e)=1
Allgemein gilt also e
lnx
= ln(e
x
) = x.
Wie löst man Exponentialgleichungen der Form e^{f(x)} = b?
#859
Gleichungen der Art
e
f(x)
= b
löst man, indem man beide Seiten logarithmiert. Merke dir für den Spezialfall b=1, dass
ln(1)=0.
Beispiel 1
Löse ohne Taschenrechner.
e
2
−
5x
=
1
Beispiel 2
Löse die Gleichung
e
2x
−
1
=
7
.
Beispiel
x
2
·
e
x
+
1
−
3e
x
=
0
Titel
×
...
Schließen
Speichern
Abbrechen