Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.4 Potenzfunktionen, Matheübungen
Potenzen und Potenzfunktionen - Lehrwerk Westermann (5.-10. Klasse) - 5 Aufgaben in 1 Level
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Die Graphen-Schnittpunkte zweier Potenzfunktionen der Art a·x
n
erhält man, indem man der Reihe nach...
(wie üblich) die beiden Funktionsterme zunächst gleichsetzt,
mit der linken Seite subtrahiert, so dass eine "...=0"-Gleichung entsteht,
auf der linken Seite die kleinere der beiden x-Potenzen ausklammert,
die beiden Faktoren (x-Potenz und Klammer dahinter) nacheinander gleich null setzt.
Bemerkung: Beide Graphen schneiden sich immer im Ursprung des Koordinatensystems. Ob es weitere Schnittpunkte gibt und wie viele, erkennt man, indem man die Graphen skizziert. Beachte beim Lösen auch die symmetrischen Eigenschaften der Graphen, damit sparst du dir Rechenarbeit.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 1
Die Graphen der angegebenen Potenzfunktionen schneiden sich nicht nur im Ursprung des KOSY. Bestimme alle sonstigen Schnittpunkte.
Zwischenschritte aktivieren
f
x
=
4x
4
g
x
=
−
2
x
3
S
|
Ergebnis prüfen
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie bestimmt man die Schnittpunkte der Graphen zweier Potenzfunktionen?
#881
Die Graphen-Schnittpunkte zweier Potenzfunktionen der Art a·x
n
erhält man, indem man der Reihe nach...
(wie üblich) die beiden Funktionsterme zunächst gleichsetzt,
mit der linken Seite subtrahiert, so dass eine "...=0"-Gleichung entsteht,
auf der linken Seite die kleinere der beiden x-Potenzen ausklammert,
die beiden Faktoren (x-Potenz und Klammer dahinter) nacheinander gleich null setzt.
Bemerkung: Beide Graphen schneiden sich immer im Ursprung des Koordinatensystems. Ob es weitere Schnittpunkte gibt und wie viele, erkennt man, indem man die Graphen skizziert. Beachte beim Lösen auch die symmetrischen Eigenschaften der Graphen, damit sparst du dir Rechenarbeit.
Beispiel
f
x
=
1
3
x
7
g
x
=
3
x
5
Ermittle die Anzahl der Schnittpunkte beider Graphen durch grobe Skizze und bestimme die genauen Koordinaten rechnerisch.
Titel
×
...
Schließen
Speichern
Abbrechen