Hilfe
  • Allgemeine Hilfe zu diesem Level
    Wandle zunächst in die Form xn=a um!
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Die Gleichung xn=a (n ∈ N)
    • hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
    • hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
    • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
    • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 1
  • Kreuze alle richtigen Lösungen (gerundet auf die zweite Dezimalstelle) an. Falls die Gleichung nicht lösbar ist, kreuze keine einzige Lösung an.
  • 5x
    3
    +
    5
    =
    20
    L = { 
    1,33
    ;   
    1,33
    ;   
    1,44
    ;   
    1,51
     }
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie viele Lösungen hat die Gleichung x^n=a (n ∈ N) in Abhängigkeit von a und n?
#880
Die Gleichung xn=a (n ∈ N)
  • hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
  • hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
Beispiel
Löse, falls möglich:
a
 
x
4
=
5
     
b
 
x
4
=
5
     
c
 
x
3
=
5
     
d
 
x
3
=
5
     
e
 
x
3
=
0