Hilfe
  • In einem Baumdiagramm gelten folgende Pfadregeln:
    1. Die Wahrscheinlichkeit eines Pfads ergibt sich durch Multiplikation der Ast-Wahrscheinlichkeiten entlang des Pfads (Produktregel).
    2. Die Wahrscheinlichkeit eines Ereignisses ergibt sich durch Addition der Wahrscheinlichkeiten aller Pfade, die zu dem Ereignis führen (Summenregel).
    3. Die Wahrscheinlichkeiten aller Äste, die von einem Verzweigungspunkt ausgehen, ergeben in der Summe 1 (Verzweigungsregel).

Ermittle die gefragten Wahrscheinlichkeiten. Evtl. auftretende Brüche sind in der Form "a/b" einzugeben. Die grau gefärbten Felder können hilfsweise ausgefüllt werden, sie werden aber nicht bewertet.

  • graphik
        
     
     
    p
    =
    ;
       
    q
    =
    ;
       
    r
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Bedingte Wahrscheinlichkeit
Lernvideo

Bedingte Wahrscheinlichkeit

Kanal: Mathegym

Welche Werte stehen in einer Vierfeldertafel und was sagen die Randwerte sowie das Feld unten rechts aus?
#381

In der Vierfeldertafel können absolute Häufigkeiten (natürliche Zahlen) oder relative Häufigkeiten / Wahrscheinlichkeiten (Dezimalbrüche) gegenübergestellt werden.

Alle vier Felder ergeben in der Summe die Gesamtzahl der Stichproben (absolute Häufigkeiten) bzw. 1 (realive Häufigkeiten / Wahrscheinlichkeiten). Diese steht ganz unten rechts.

Neben den vier eigentlichen Feldern sind die Randfelder zu beachten. Hier handelt es sich um die Summen der jeweiligen Zeilen bzw. Spalten.

Beispiel
Ergänze die Vierfeldertafel:
(a) absolute Häufigkeiten
A
A
B
4
13
B
25
150
(b) relative Häufigkeiten
A
A
B
0,17
0,83
B
0,15
 
Was sind die drei Pfadregeln in einem Baumdiagramm?
#379
In einem Baumdiagramm gelten folgende Pfadregeln:
  1. Die Wahrscheinlichkeit eines Pfads ergibt sich durch Multiplikation der Ast-Wahrscheinlichkeiten entlang des Pfads (Produktregel).
  2. Die Wahrscheinlichkeit eines Ereignisses ergibt sich durch Addition der Wahrscheinlichkeiten aller Pfade, die zu dem Ereignis führen (Summenregel).
  3. Die Wahrscheinlichkeiten aller Äste, die von einem Verzweigungspunkt ausgehen, ergeben in der Summe 1 (Verzweigungsregel).
Wie liest oder ermittelt man die Wahrscheinlichkeiten P(A), P(A ∩ B) und P_A(B) in einem Baumdiagramm?
#380
Ermittle im Baumdiagramm:

P(A) =

  • Wahrscheinlichkeit über dem Ast, der vom Startpunkt zum Ereignis A führt oder
  • Summe der Wahrscheinlickeiten aller Pfade, die zu A führen (Verzweigungsregel)
P(A ∩ B) =
  • Wahrscheinlichkeit des Pfades, der über A und B bzw. über B und A führt; gemeint ist also die Wahrscheinlichkeit, dass sowohl A als auch B eintritt.
PA(B) (bedingte Wahrscheinlichkeit) =
  • Wahrscheinlichkeit über dem Ast, der von A zu B führt; gemeint ist also die Wahrscheinlichkeit von Ereignis B unter der Bedingung, dass auch A eintritt (eingetreten ist).
Beispiel
Ergänze die fehlenden Ast- und Pfadwahrscheinlichkeiten und lies dann die gefragten Wahrscheinlichkeuten ab:
graphik
P
A
 
B
=
?
P
 
B
=
?
P
 
A
 
 
B
=
?
Wie lassen sich die Wahrscheinlichkeiten P(A ∩ B), P(A) und P_A(B) in einer Vierfeldertafel bestimmen?
#378
Ermittle in der Vierfeldertafel:

P(A ∩ B) =

  • Wahrscheinlichkeit in der Zelle, in der sich A- und B-Streifen überschneiden
P(A) =
  • Wahrscheinlichkeit am Rand des A-Streifens oder
  • Summe der Wahrscheinlickeiten von P(A ∩ B) und P(A ∩ B)
PA(B) (bedingte Wahrscheinlichkeit) =
  • P(A ∩ B) / P(A); die bedingte Wahrscheinlichkeit kann also in der Vierfeldertafel nicht direkt abgelesen, aber leicht berechnet werden.

Beispiel
Bestimme die gefragten Wahrscheinlichkeiten:
A
A
B
4
13
17
B
25
108
133
29
121
150
P
 
A ∩
 
B
=
?
;
P
 
A
=
?
;
P
B
 
A
=
?