Hilfe
  • Betrachte geeignete rechtwinklige Dreiecke.
  • Nach dem Satz des Pythagoras gilt in jedem rechtwinkligen Dreieck:

    Hypotenuse2 = erste Kathete2 + zweite Kathete2

    Zur Erinnerung: Die Hypotenuse ist diejenige der drei Seiten, die dem rechten Winkel gegenüber liegt. Sie ist damit auch immer die längste aller drei Seiten.

Gegeben ist ein gleichschenkliges Trapez (Skizze) mit unten stehenden Angaben. Berechne die gesuchten Größen. Verwende die ungerundeten Teilergebnisse zum Weiterrechnen. Ergebnis(se) falls erforderlich auf die 2. Dezimalstelle gerundet eingeben!

  • graphik
    d
    =
    10
    c
    =
    5
    h
    =
    6
    a
    =
    A
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Satz des Pythagoras + Beweis mittels Ähnlichkeit
Lernvideo

Satz des Pythagoras + Beweis mittels Ähnlichkeit

Kanal: Mathegym

Wie lautet der Satz des Pythagoras ohne Verwendung von Variablen?
#394
Nach dem Satz des Pythagoras gilt in jedem rechtwinkligen Dreieck:

Hypotenuse2 = erste Kathete2 + zweite Kathete2

Zur Erinnerung: Die Hypotenuse ist diejenige der drei Seiten, die dem rechten Winkel gegenüber liegt. Sie ist damit auch immer die längste aller drei Seiten.
Beispiel 1
Bestimme x.
graphik
Beispiel 2
Gegeben ist ein rechtwinkliges Dreieck ABC mit ∠A = 90°; a = 3; b = 2. Bestimme c.
Beispiel 3
Gegeben ist ein gleichschenkliges Dreieck mit Basis b = 5 LE und Flächeninhalt A = 31 FE. Berechne die Länge seiner Schenkel s.
Beispiel 4
P halbiert die obere Kante. Bestimme 
PQ
 in Abhängigkeit von a.
graphik
Wie berechnet man die Entfernung zwischen zwei Punkten in der Ebene?
#883

Die Entfernung zweier Punkte A und B erhält man, indem man ein rechtwinkliges Dreieck mit AB als Hypotenuse und den Kathetenlängen xB − xA und yB − yA (gemeint sind die x- und y-Koordinaten von A und B) betrachtet. Nach dem Satz des Pythagoras muss man die Quadrate beider Differenzen summieren und aus dem Ergebnis die Wurzel ziehen, um die Entfernung zwischen A und B zu erhalten.