Hilfe
  • Evtl. kannst du b direkt ablesen.
  • Funktionen mit der Gleichung f(x) = b · ax heißen Exponentialfunktionen. Dabei ist
    • a > 0 der Wachstumsfaktor und
    • b = f(0) der Anfangsbestand
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Wähle zwei geeignete Punkte und bestimme a und b so, dass der Graph zur Exponentialfunktion f(x) = b · ax passt. Evtl. auftretende Brüche in der Form "a/b" bzw. "-a/b" eingeben!

  • graphik
    y
    =
    ·
    x
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie beeinflussen die Werte von a und b sowie ihre Modifikationen den Graphen der Funktion f(x) = b*a^x?
#951
Ist f(x) = b·ax, so gilt für
  • b>0 und a>1:
    der zugehörige Graph schneidet die y-Achse im positiven Bereich und steigt an (umso steiler, je größer a)
  • b>0 und 0<a<1:
    der zugehörige Graph schneidet die y-Achse im positiven Bereich und fällt (umso steiler, je kleiner a)
  • g(x) = −b·ax:
    der Graph von g entsteht, indem man den Graphen von f an der x-Achse spiegelt
  • h(x) = b·(1/a)x:
    der Graph von h entsteht, indem man den Graphen von f an der y-Achse spiegelt
Beispiel
Skizziere die Graphen folgender Funktionen:
f
 
x
=
2
·
1,5
x
     
g
 
x
=
5
·
1,1
x
     
h
 
x
=
3
·
3
4
x
     
i
 
x
=
2
·
1,5
x
     
k
 
x
=
3
·
4
3
x
Wo ergeben sich welche Symmetrien? Welche Funktion wächst am stärksten?
Was ist der allgemeine Term einer Exponentialfunktion und welche Bedeutung haben die Parameter?
#350
Funktionen mit der Gleichung f(x) = b · ax heißen Exponentialfunktionen. Dabei ist
  • a > 0 der Wachstumsfaktor und
  • b = f(0) der Anfangsbestand
Beispiel 1
Gegeben ist der Graph einer Exponentialfunktion mit der Gleichung 
y
=
b
·
a
x
. Bestimme a und b.
graphik
Beispiel 2
Schreibe in der Form 
f
 
x
=
b
·
a
x
.
f
 
x
=
1
5
6
·
2
1
x
Wie beeinflussen die Parameterwerte den Verlauf des Graphen einer Exponentialfunktion?
#349
Der Graph einer Exponentialfunktion mit der Gleichung y = b · ax hat stets die x-Achse als Asymptote und schneidet die y-Achse in (0|b).

Im Fall b > 0

  • steigt der Graph für a > 1 ("ins Unendliche")
  • fällt der Graph für 0 < a < 1

Im Fall b < 0 (Spiegelung an der x-Achse gegenüber dem positiven Betrag von b) verhält es sich genau umgekehrt.

Beispiel
Für welche Werte von a
(a) fällt der Graph von    f(x)
=
a
+
1
·
x
2
 
   streng monoton?
(b) steigt der Graph von    f(x)
=
2
·
a
x
 
   streng monoton?
Wie kann eine Funktion f(x) abgewandelt werden, um ihren Graphen Gf zu strecken, stauchen, verschieben oder zu spiegeln?
#488
h ( x ) = Gh geht aus Gf hervor durch
f ( x + a ) Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0 Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x ) Spiegelung an der x-Achse
f ( a · x ), a > 0 Streckung mit Faktor 1/a in x-Richtung
f ( −x ) Spiegelung an der y-Achse
Beispiel
f
 
x
=
1
3
·
2
x
1,5
h
 
x
=
2
x
3
+
1
Welche Verschiebung(en)/Streckung(en)/Spiegelung(en) sind am Graphen von f durchzuführen, um den Graphen von h zu erhalten?