Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

    a · b + a · c = a · (b + c)

    (Ebenso mit − statt +)

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 8
  • Berechne durch Ausklammern.
  • 1
    3
    ·
    7
    10
    1
    3
    ·
    3
    5
    =
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Rechnen mit rationalen Zahlen Teil 1
Lernvideo

Rechnen mit rationalen Zahlen Teil 1

Kanal: Mathegym
Rechnen mit rationalen Zahlen Teil 2
Lernvideo

Rechnen mit rationalen Zahlen Teil 2

Kanal: Mathegym

Was besagt das Distributivgesetz in der Mathematik?
#119
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel
Löse durch Ausmultiplizieren:
6
·
40
+
7
=
?
·
40
+
6
·
?
=
?
+
?
=
?
Was bedeutet Ausklammern und welches Rechengesetz wird dabei angewendet?
#253
Ausklammern heißt, dass man Terme wie

a · b ± a · c

a : c ± b : c

vereinfacht zu

a · (b ± c)

(a ± b) : c

Das Gesetz hinter dieser Rechneregel heißt Distributivgesetz.
Was bedeutet Ausklammern und wie funktioniert es?
#122
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)

(Ebenso mit − statt +)

Beispiel
Berechne durch Ausklammern:
2
7
·
1
3
+
2
7
·
5
6
=
Wann sollte man Dezimalzahlen in Brüche umwandeln, um einen Termwert zu berechnen?
#87
Treten in einem Term sowohl Kommazahlen als auch Brüche auf, so steht es einem prinzipiell frei, ob man die Dezimalbrüche in Brüche umwandelt oder umgekehrt.

Periodische Dezimalbrüche sollten dagegen zum Weiterrechnen immer in Brüche umgewandelt werden.

Beispiel
Berechne und gib das Ergebnis als Bruch oder als Dezimalbruch an.
7,35
9,3
:
3
5
·
0,
 
3