Die Graphen zweier quadratischer Funktionen (Parabeln) oder einer quadratischen und einer linearer Funktion (Parabel und Gerade) f und g können sich zweimal schneiden, einmal berühren oder auch keine gemeinsamen Punkte aufweisen. Um das herauszufinden, setzt man beide Funktionsterme gleich, also f(x) = g(x), und bringt die Gleichung in die Nullform ax² + bx + c = 0. Mit Hilfe der Diskriminante D = b² − 4ac bekommt man die Antwort:
Eine Lösung der Gleichung f(x) = h(x) kann als Schnitt- oder Berührstelle der beiden Graphen Gf und Gh interpretiert werden. Eine Lösung der Gleichung f(x) = 0 kann als Schnitt- oder Berührstelle von Gf mit der x-Achse interpretiert werden.
Sofern die Gleichung quadratisch ist, kann man aus dem Vorzeichen der Diskriminante D auf die Anzahl der gemeinsamen Punkte schließen und umgekehrt:
Spezialfall f(x) = 0: Hier geht es um die gemeinsamen Punkte von Gf mit der x-Achse.