Hilfe
  • Bei der Gleichung einer quadratischen Funktion bzw. Parabel unterscheidet man folgende Formen:
    1. Allgemeine Form:
      y=ax²+bx+c
      Hieraus lässt sich der Schnittpunkt mit der y-Achse (0|c) ablesen.
       
    2. Scheitelpunktform:
      y=a·(x−xS)²+yS
      Hieraus lässt sich der Scheitelpunkt S(xS|yS) ablesen.
       
    3. Nullstellenform (Produktform/faktorisierte Form):
      y=a·(x−x1)·(x−x2)
      Hieraus lassen sich die Nullstellen x1 und x2 ablesen.

Stelle den passenden Funktionsterm zusammen.

  • graphik
    f(x) =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie bestimmt man die Funktionsgleichung einer quadratischen Funktion mit einem bekannten Parameter?
#659
Eine quadratische Funktion hat die allgemeine Funktionsgleichung y=ax²+bx+c. Gibt man zwei Punkte auf dem Graphen (Schaubild) der Funktion und einen der Parameterwerte a, b oder c vor, lässt sich die Funktionsgleichung bestimmen.

Durch das Einsetzen der zwei Punkte und des Parameterwerts in die Funktionsgleichung y = ax² + bx + c erhält man ein Gleichungssystem mit zwei Unbekannten. Dieses kann mittels Einsetz- oder Subtraktionsverfahren gelöst werden.

Beispiel
Bestimme die Gleichung der Parabel p, die durch die Punkte A und B verläuft.
A
 
2
 
|
 
8
B
 
1
 
|
 
1
p:y
=
ax
2
+
bx
+
9
Welche drei Darstellungsformen gibt es für quadratische Funktionen und wie werden sie beschrieben?
#923
Bei der Gleichung einer quadratischen Funktion bzw. Parabel unterscheidet man folgende Formen:
  1. Allgemeine Form:
    y=ax²+bx+c
    Hieraus lässt sich der Schnittpunkt mit der y-Achse (0|c) ablesen.
     
  2. Scheitelpunktform:
    y=a·(x−xS)²+yS
    Hieraus lässt sich der Scheitelpunkt S(xS|yS) ablesen.
     
  3. Nullstellenform (Produktform/faktorisierte Form):
    y=a·(x−x1)·(x−x2)
    Hieraus lassen sich die Nullstellen x1 und x2 ablesen.