Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Die mittlere Änderungsrate einer Funktion f im Intervall [a; b] ergibt sich durch

    [ f(b) − f(a) ] / ( b − a)

    Aufgrund seiner Struktur nennt man diesen Term auch Differenzenquotient.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Bestimme die mittlere Änderungsrate. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • Mobilfunkanschlüsse in Deutschland (Quelle BITKOM)
    Jahr
    96
    97
    98
    99
    00
    01
    02
    03
    04
    05
    06
    Anschlüsse (Mio)
    5,6
    8,3
    13,9
    23,5
    48,1
    56,1
    59,2
    64,8
    71,4
    79,2
    82,8
    Von 1996 bis 2000: 
    m
     
     
     
    Mio/Jahr
    Von 2000 bis 2006: 
    m
     
     
     
    Mio/Jahr
    Bemerkung: die beliebte Frage nach dem "eingeschlossen oder ausgeschlossen" erübrigt sich hier. Es geht um die Veränderung, also die Differenz zwischen dem "von" und dem "bis"!
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Mittlere und lokale Änderungsrate - Teil 1
Lernvideo

Mittlere und lokale Änderungsrate - Teil 1

Kanal: Mathegym

Wie berechnet man die mittlere Änderungsrate einer Funktion und welcher synonyme Begriff ist dafür gebräuchlich?
#396
Die mittlere Änderungsrate einer Funktion f im Intervall [a; b] ergibt sich durch

[ f(b) − f(a) ] / ( b − a)

Aufgrund seiner Struktur nennt man diesen Term auch Differenzenquotient.
Beispiel
(1) Maximilian war Ende Januar 1,35 m groß und Ende Juni 1,37 m. Wie groß ist in diesem Zeitraum die durchschnittliche Änderungsrate?
(2) Wie groß ist die durchschnittliche Änderungsrate der Normalparabel mit Scheitel im Ursprung im Intervall [3;7]?
Wie lassen sich die mittlere und lokale Änderungsrate graphisch interpretieren?
#397
Graphisch lässt sich die mittlere Änderungsrate im Intervall [a; b] als Steigung der Geraden (Sekante) durch die entsprechenden Punkte des Graphen veranschaulichen.

Die lokale Änderungsrate an der Stelle x = a ist folglich die Steigung der Geraden (Tangente), die den Graph im entsprechenden Punkt berührt. Man stelle sich zum besseren Verständnis ein winziges Intervall [a; b] und die zugehörige Sekante vor. Lässt man das Intervall weiter schrumpfen, also b gegen a gehen, wird aus der Sekante eine Tangente.

Beispiel
Schätze die mittlere Änderungsrate im angegebenen Intervall bzw. die lokale Änderungsrate an der gegebenen Stelle ab.
graphik
Intervall [-1; 5]:       
 
m
 
≈ ?
Stelle x
0
=
4:       
 
m ≈ ?