Hilfe
  • Jede lineare Gleichung mit einer Unbekannten kann auch zeichnerisch gelöst werden: Die Terme links und rechts vom Gleichheitszeichen werden dabei als Geraden interpretiert (y = ...). Zeichne die Geraden ein und schaue, ob und - wenn ja - wo sie sich schneiden.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Löse anhand der Zeichnung. Interpretiere dazu die linke und rechte Seite der Gleichung jeweils als Gerade, suche diese in der Zeichnung und lies dann die Lösung ab. Um sicherzugehen, überprüfe durch Rechnung, bevor du das Ergebnis abschickst.

  • 1
    2
    3
     
    x
    +
    1
    =
    1
    4
    An den Geraden Nr. und Nr. liest man ab: 
    x
    =
    .
    graphik
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie bestimmt man den Schnittpunkt zweier Geraden?
#155

Den Schnittpunkt zweier Geraden ermittelt man, indem man ihre Funktionsterme gleichsetzt:

  1. Setze g(x) = h(x) und löse diese Gleichung nach x auf.
  2. Setze den ermittelten x-Wert in g(x) oder h(x) ein, so erhältst du den y-Wert des Schnittpunkts.

Spezialfall: Den Schnittpunkt einer Gerade g mit der x-Achse (y = 0) ermittelt man durch g(x) = 0.

Beispiel
Bestimme durch Rechnung den Schnittpunkt der beiden Geraden g und h mit folgenden Gleichungen:
g
:
y
=
2,1
x
3
 
          
 
h
:
y
=
4
9
 
x
+
0,9
Welche vier Ausnahmefälle sind zu beachten, wenn man die Lage zweier Geraden zueinander untersucht?
#156
Folgende Ausnahmefälle hinsichtlich der Lage zweier Geraden sind zu beachten:
  • Beide Geraden sind (echt) parallel, haben also keinen Schnittpunkt. Das passiert, wenn beide Geraden dieselbe Steigung, aber unterschiedliche y-Achsenabschnitte haben. In dem Fall lässt sich die Gleichung g(x) = h(x) nicht lösen, es entsteht eine falsche Aussage wie z.B. 1=0.
  • Beide Geraden sind identisch, zu erkennen an derselben Steigung und demselben y-Achsenabschnitt. Die Gleichung g(x) = h(x) beschreibt in diesem Fall eine wahre Aussage wie z.B. 0 = 0, hat also unendlich viele Lösungen.
  • Eine Geraden ist senkrecht, z.B. x = 5; dann kann die andere Gerade sie, wenn überhaupt, nur bei x = 5 schneiden.
  • Eine Geraden ist waagrecht, z.B. y = 5; dann kann die andere Gerade sie, wenn überhaupt, nur in (?|5) schneiden.
Beispiel
f: y
=
1
8
 
x
+
2
     
g: x
=
4
     
h: y
=
3
     
i: y
=
0,125x
Untersuche paarweise, wie die Geraden zueinander liegen und bestimme gegebenenfalls den Schnittpunkt.
Wie löst man eine lineare Gleichung zeichnerisch?
#423
Jede lineare Gleichung mit einer Unbekannten kann auch zeichnerisch gelöst werden: Die Terme links und rechts vom Gleichheitszeichen werden dabei als Geraden interpretiert (y = ...). Zeichne die Geraden ein und schaue, ob und - wenn ja - wo sie sich schneiden.
Beispiel
Löse durch Zeichnung:
a) 
2
1
2
 
x
=
3
+
1,5
 
x
b) 
3x
+
0,25
=
1
2
Wie bestimmt man die Lagebeziehung zweier Geraden anhand ihrer Steigungen und y-Achsenabschnitte ohne zu rechnen?
#1122
Kennt man die Steigungen und y-Achsenabschnitte zweier Geraden, kann man OHNE RECHNUNG angeben, wie die Geraden zueinander liegen:
  • Steigungen gleich, y-Achsenabschnitte nicht gleich: Die Geraden sind echt parallel.
  • Steigungen gleich, y-Achsenabschnitte gleich: Die Geraden sind identisch.
  • Steigungen nicht gleich, y-Achsenabschnitte nicht gleich: Die Geraden schneiden sich.
  • Steigungen nicht gleich, y-Achsenabschnitte gleich: Die Geraden schneiden sich auf der y-Achse.
    Der Schnittpunkt kann direkt angegeben werden: S ( 0 | c )
Wie berechnet man die Steigung einer Geraden mit zwei gegebenen Punkten?
#151
Ist eine Gerade g durch zwei Punkte A(x1|y1) und B(x2|y2) gegeben, so kann man ihre Steigung m so berechnen:
  1. Berechne die Differenz der y-Werte beider Punkte, also Δy = y2 − y1.
  2. Berechne ebenso die Differenz der x-Werte beider Punkte, also Δx = x2 − x1.
  3. Der Bruch Δy / Δx ergibt die Steigung m.
Beispiel
Ermittle die Steigung der Gerade, die durch die Punkte (-1,5 | 2,5) und (0 | -3) geht.
Ist eine Gerade g durch ihre Steigung m und einen beliebigen Punkt P ∈ g gegeben, so kann man den y-Achsenabschnitt c leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + c (für m setze die bekannte Steigung ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten c auf.
Beispiel
Wo schneidet die Gerade, die durch 
m
=
1,6
 und P(2|−0,5) gegeben ist, die y-Achse?
Ist eine Gerade g durch ihren y-Achsenabschnitt c und einen beliebigen Punkt P ∈ g gegeben, so kann man die Steigung m leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + c (für c setze den bekannten y-Achsenabschnitt ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten m auf.
Beispiel
Welche Steigung hat die Gerade, die durch c = 2,5 und P(2 | -0,5) gegeben ist?
Wie lautet die Geradengleichung?
Wie bestimmt man die Gleichung einer Geraden aus zwei gegebenen Punkten?
#626

Ist eine Gerade durch zwei Punkte gegeben, so geht man wie folgt vor, um ihre Gleichung, sprich m und c, zu ermitteln:

  1. Bestimme zunächst die Steigung m = Δy / Δx .
  2. Setze dann in die Gleichung y = m·x + c einen der beiden Punkte ein und löse die Gleichung nach c auf.
Beispiel
Ermittle die Gleichung der Geraden g, die durch die Punkte P1(−3|2) und P2(5|−4) geht.