Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
4.4 Die Scheitelform der Parabelgleichung, Matheübungen
Quadratische Funktionen - G8 Lehrwerk Lambacher Schweizer - 24 Aufgaben in 5 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Durch die Gleichung
y = a⋅(x - x
S
)² + y
S
(a≠0)
ist eine Parabel mit den Scheitelkoordinaten
x
S
und
y
S
gegeben, die gegenüber der Normalparabel mit der Gleichung
y = x²
nach unten geöffnet ist, falls a negativ ist und
evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 4
in Level 5
Betrachte die abgebildete Parabel mit der Gleichung y = a (x-x
S
)² + y
S
. Bestimme a, x
S
und y
S
. Evtl. auftretende Brüche sind in der Form "p/q" bzw. "-p/q" einzutragen.
Zwischenschritte aktivieren
a
=
x
S
=
y
S
=
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie zeichnet man eine Parabel in Scheitelform ohne Wertetabelle?
#917
Um eine in Scheitelform gegebene Parabel mit der Gleichung y=a·(x−x
S
)²+y
S
ohne Wertetabelle zu zeichnen, geht man am besten vom Scheitel S aus nacheinander um 1, 2, 3 usw. Einheiten nach rechts und dabei um a·1², a·2², a·3² usw. Einheiten nach oben (a>0) oder unten (a<0). Somit erhält man den rechten Parabelast. Der linke ergibt sich durch Spiegelung.
Beispiel
Zeichne die Parabel mit der Gleichung
y
=
1
2
x
−
3
2
+
1
in ein Koordinatensystem. Benutze dabei weder den Taschenrechner noch eine schriftliche Wertetabelle.
Wie überprüft man, ob ein Punkt bezüglich eines Funktionsgraphen auf, über oder unter diesem liegt?
#234
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Graphen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
über dem Graphen, wenn b > f(a)
auf dem Graphen, wenn b = f(a)
unter dem Graphen, wenn b < f(a)
Beispiel
f:
y
=
−
1
2
x
2
−
x
+
8
;
A
−
5
|
−
1
;
B
−
2
|
9
;
C
1
|
6,5
Gib jeweils an, ob der der Punkt über, auf oder unter der Parabel liegt.
Wie beeinflussen die Parameter a, x
S
und y
S
die Form und Lage einer Parabel mit der Gleichung y = a⋅(x - x
S
)² + y
S
?
#913
Durch die Gleichung
y = a⋅(x - x
S
)² + y
S
(a≠0)
ist eine Parabel mit den Scheitelkoordinaten
x
S
und
y
S
gegeben, die gegenüber der Normalparabel mit der Gleichung
y = x²
nach unten geöffnet ist, falls a negativ ist und
evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Beispiel
Abgebildet ist die Parabel mit der Gleichung
y
=
a
·
x
−
x
S
2
+
y
S
Bestimme a,
x
S
und
y
S
.
Titel
×
...
Schließen
Speichern
Abbrechen