Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
5.1 Punkte und Figuren im Raum, Matheübungen
Schlüsselkonzept: Vektoren - Geraden im Raum - Lehrwerk Lambacher Schweizer (5.-13. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Ein Punkt
P(p
1
| p
2
| p
3
)
im dreidimensionalen Koordinatensystem liegt
auf der x
1
-Achse, wenn p
2
= p
3
= 0
auf der x
2
-Achse, wenn p
1
= p
3
= 0
auf der x
3
-Achse, wenn p
1
= p
2
= 0
in der x
1
x
2
-Ebene, wenn p
3
= 0
in der x
1
x
3
-Ebene, wenn p
2
= 0
in der x
2
x
3
-Ebene, wenn p
1
= 0
Punkte auf der x
1
-Achse liegen erst recht in der x
1
x
2
-Ebene und in der x
1
x
3
-Ebene. Für Punkte auf der x
2
-Achse und auf der x
3
-Achse gilt dies analog.
Kreuze alle richtigen Optionen an.
P(2|-1|0) liegt auf bzw. in der
x
1
-Achse
x
2
-Achse
x
3
-Achse
x
1
x
2
-Ebene
x
1
x
3
-Ebene
x
2
x
3
-Ebene
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
Stoff zum Thema
Wie erkennt man die Lage eines Punktes P(p1 | p2 | p3) bezüglich der Achsen und Ebenen im Koordinatensystem?
#442
Ein Punkt
P(p
1
| p
2
| p
3
)
im dreidimensionalen Koordinatensystem liegt
auf der x
1
-Achse, wenn p
2
= p
3
= 0
auf der x
2
-Achse, wenn p
1
= p
3
= 0
auf der x
3
-Achse, wenn p
1
= p
2
= 0
in der x
1
x
2
-Ebene, wenn p
3
= 0
in der x
1
x
3
-Ebene, wenn p
2
= 0
in der x
2
x
3
-Ebene, wenn p
1
= 0
Punkte auf der x
1
-Achse liegen erst recht in der x
1
x
2
-Ebene und in der x
1
x
3
-Ebene. Für Punkte auf der x
2
-Achse und auf der x
3
-Achse gilt dies analog.
Wie lauten die Koordinaten der Spiegelpunkte von P(p1 | p2 | p3) an den Achsen und Ebenen des Koordinatensystems?
#443
Spiegelung von P(p
1
| p
2
| p
3
) an der...
x
1
-Achse ⇒ P ´ (p
1
| −p
2
| −p
3
)
x
2
-Achse ⇒ P ´ (−p
1
| p
2
| −p
3
)
x
3
-Achse ⇒ P ´ (−p
1
| −p
2
| p
3
)
der x
1
x
2
-Ebene ⇒ P ´ (p
1
| p
2
| −p
3
)
der x
1
x
3
-Ebene ⇒ P ´ (p
1
| −p
2
| p
3
)
der x
2
x
3
-Ebene ⇒ P ´ (−p
1
| p
2
| p
3
)
Titel
×
...
Schließen
Speichern
Abbrechen