Hilfe
  • Mögliche Vorgehensweise:
    • Stelle Terme für das ursprüngliche und für das neue Volumen auf.
    • Bilde den Bruchterm: "neues Volumen" / "ursprüngliches Volumen".
    • Kürze den Bruchterm so weit wie möglich.
  • Volumenformeln im Überblick:
    • Quader und Prisma: V = G · h
    • Pyramide: V = ⅓ G · h
    • Zylinder: V = r² π · h
    • Kegel: V = ⅓ r² π · h

Welchen Anteil des ursprünglichen Köpervolumens besitzt der Teilkörper? Wähle den richtigen Anteil aus.

  • graphik
    Vom Zylinder geht man zum Kegel über,
    Radius und Höhe bleiben unverändert.
     
    1
    2
            
    1
    3
            
    1
    4
     
    1
    6
            
    1
    7
            
    1
    8
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie berechnet man das Volumen und die Oberfläche einer Kugel?
#502
Eine Kugel mit dem Radius r besitzt
  • das Volumen V = 4/3 · r³ · π
  • den Oberflächeninhalt O = 4 · r² · π
Beispiel
Die gefärbte Figur wird um die Achse a gedreht. Berechne Volumen und Oberfläche des Rotationskörpers.
graphik
Wie berechnet man die Volumina von Prismen, Pyramiden, Zylindern und Kegeln?
#770
Volumenformeln im Überblick:
  • Quader und Prisma: V = G · h
  • Pyramide: V = ⅓ G · h
  • Zylinder: V = r² π · h
  • Kegel: V = ⅓ r² π · h