Hilfe
  • Zwei Dreiecke können unterschiedlich groß sein und doch ähnlich aussehen, weil sie dieselben Proportionen (Seitenverhältnisse) haben.

    Ähnlich sind zwei Dreiecke dann, wenn sie ... übereinstimmen.

    • im Längenverhältnis sich entsprechender Seiten (S:S:S-Satz)
    • in zwei Winkeln (W:W-Satz)
    • in einem Winkel und dem Längenverhältnis der anliegenden Seiten (S:W:S-Satz)
    • im Längenverhältnis zweier sich entsprechender Seiten und dem Winkel gegenüber der längeren Seite (S:s:W-Satz)
    Der Satz gilt auch in umgekehrter Richtung, d.h. in zueinander ähnlichen Dreiecken trifft jede der aufgeführten Übereinstimmungen zu.

Berechne mit Hilfe ähnlicher Dreiecke und gib als Bruch an.

  • graphik
    x
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was sind die Erkennungsmerkmale ähnlicher Dreiecke?
#439
Zwei Dreiecke können unterschiedlich groß sein und doch ähnlich aussehen, weil sie dieselben Proportionen (Seitenverhältnisse) haben.

Ähnlich sind zwei Dreiecke dann, wenn sie ... übereinstimmen.

  • im Längenverhältnis sich entsprechender Seiten (S:S:S-Satz)
  • in zwei Winkeln (W:W-Satz)
  • in einem Winkel und dem Längenverhältnis der anliegenden Seiten (S:W:S-Satz)
  • im Längenverhältnis zweier sich entsprechender Seiten und dem Winkel gegenüber der längeren Seite (S:s:W-Satz)
Der Satz gilt auch in umgekehrter Richtung, d.h. in zueinander ähnlichen Dreiecken trifft jede der aufgeführten Übereinstimmungen zu.
Beispiel
Gegeben sind die Dreiecke ABC und DEF mit 
γ
=
45°,
 
a
=
1,
 
b
=
2,
 
δ
=
45°,
 
d
=
4,
 
e
=
2.
 Sind beide Dreiecke ähnlich und wenn ja nach welchem Satz?