Arbeitsauftrag
Die Aufgaben in diesem Level gehören zu einem Arbeitsauftrag, den du derzeit erledigen sollst. Klicke auf den Button, um ihn aufzurufen:
Stoff zum Thema (+Video)
Wie wandelt man eine gemischte Zahl in einen Bruch um und wie macht man aus einem Bruch eine gemischte Zahl?
#19
  • Eine gemischte Zahl setzt sich zusammen aus einer ganzen Zahl und (dahinter) einem Bruch. Dazwischen muss man sich ein + denken.
  • Umwandlung einer gemischten Zahl in einen Bruch: Multipliziere die ganze Zahl mit dem Nenner und addiere dazu den Zähler. Das Ergebnis ergibt den neuen Zähler (der Nenner bleibt unverändert).
  • Umwandlung von einem Bruch in eine gemischte Zahl: Zähler durch Nenner ergibt die ganze Zahl. Der Rest wandert in den Zähler.
Beispiel 1
5
2
7
=
?
 
Bruch
Beispiel 2
49
5
=
?
 
gemischte Zahl
Wann ist der Wert eines Bruchs ganzzahlig, kleiner als 1 oder größer als 1?
#23
Der Wert eines Bruchs z/n mit Zähler z und Nenner n ist
  • ganzzahlig, wenn z ein Vielfaches von n ist wie z.B. bei 12/4; der Wert ist dann gleich dem Ergebnis der Division, hier also 12 : 4 = 3
  • kleiner als 1, wenn der Zähler kleiner als der Nenner ist wie z.B. bei 3/4
  • größer als 1, wenn der Zähler größer als der Nenner ist wie z.B. bei 7/2
Wann kann man zwei Brüche leicht nach ihrer Größe ordnen?
#1339
Haben zwei Brüche denselben Nenner, ist der Bruch größer, der den größeren Zähler besitzt.
Beispiel
Setze <,> oder = ein.
3
14
 
 
9
14
3
 
2
5
 
 
7
5
Wie vergleicht man die Größe von Brüchen anhand einfacher Regeln?
#13
  • Haben zwei Brüche denselben Nenner, ist der Bruch größer, der den größeren Zähler besitzt.
  • Haben zwei Brüche denselben Zähler, ist der Bruch größer, der den kleineren Nenner besitzt.
  • Beträgt der Zähler mehr als die Hälfte des Nenners, so ist der Bruch größer als 1/2.
  • Beträgt der Zähler weniger als die Hälfte des Nenners, so ist der Bruch kleiner als 1/2
  • Es gilt 1/2 < 2/3 < 3/4 < 4/5 u.s.w. (bei diesen Brüchen ist der Zähler um eins kleiner als der Nenner).
Beispiel 1
Vergleiche hinsichtlich ihrer Größe:
5
31
 
und
 
7
31
7
4
 
und
 
7
3
7
8
 
und
 
8
9
6
11
 
und
 
3
7
3
20
 
und
 
2
15
Beispiel 2
Vergleiche hinsichtlich ihrer Größe:
4
3
11
 
und 3
17
10