Hilfe
  • Wird zu einer Gleichung eine Grundmenge G angegeben, so muss die gesuchte Lösung in dieser Grundmenge enthalten sein - ansonsten gibt es keine Lösung. Die Lösungsmenge L enthält alle Lösungen der Gleichung. Gibt es keine Lösung, so ist sie leer.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Ermittle die Lösungsmenge durch Ausprobieren oder Überlegung. Beachte dabei die Grundmenge. Gib "!" ein, wenn die Lösungsmenge leer ist. Brüche sind in der Form "a/b" bzw. "-a/b" einzugeben.

  • 1,2
    ·
    x
    =
    7
    6
        (G = ℚ)
    L = { }
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie löst man Gleichungen der Form x + a = b, x - a = b und a - x = b?
#525

Bei Gleichungen der Form x + a = b erhält man x durch die Umkehraufgabe b − a.

Bei Gleichungen der Form x − a = b erhält man x durch die Umkehraufgabe b + a.

Bei Gleichungen der Form a − x = b erhält man x durch die Umkehraufgabe a − b.

Beispiel
Löse jeweils mit Hilfe der passenden Umkehraufgabe:
a)   
17
+
x
=
26
b)   
x
17
=
26
c)   
97
x
=
49
Wie löst man lineare Gleichungen der Form a⋅x=b?
#637
Bei Gleichungen der Form a·x=b muss man b durch a dividieren, um x zu erhalten.
Beispiel
Löse die Gleichung:
8
·
x
=
104
x
=
?
Wie löst man lineare Gleichungen der Form a·x + b = c und a·x - b = c?
#636
Bei Gleichungen der Form a·x + b = c muss man zuerst b von c subtrahieren und danach dieses Ergebnis durch a dividieren.
Bei Gleichungen der Form a·x − b = c muss man zuerst b zu c addieren und danach dieses Ergebnis durch a dividieren.
Beispiel
Löse die Gleichung durch Rückwärtsrechnen:
7
·
x
+
12
=
26
Was sind Grund- und Lösungsmenge bei Gleichungen?
#534

Wird zu einer Gleichung eine Grundmenge G angegeben, so muss die gesuchte Lösung in dieser Grundmenge enthalten sein - ansonsten gibt es keine Lösung. Die Lösungsmenge L enthält alle Lösungen der Gleichung. Gibt es keine Lösung, so ist sie leer.

Beispiel
Löse über der angegebenen Grundmenge
2
5
·
x
=
0,6
    (G = ℚ)