Hilfe
  • Ein spezielles gleichschenkliges Dreieck ist das gleichseitige Dreieck: Bei ihm sind nicht nur zwei, sondern alle drei Seiten gleich lang.

    Äquivalent zu gleichseitig sind folgende Aussagen:

    • alle Winkel sind gleichgroß (jeweils 60°)
    • achsensymmetrisch bzgl. dreier unterschiedlicher Achsen

Konstruiere (nur Zirkel und Lineal!) den beschriebenen Sachverhalt. Beantworte die Kontrollfrage erst nach der Konstruktion.

  • Gegeben ist das gleichseitige Dreieck ABC (Seitenlänge beliebig) sowie die Winkelhalbierende w von ∠CBA. Die Geraden AB und w bilden dann einen Winkel von
    30°
    45°
    60°
    90°
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Beispiel
graphik
ε=?
Was bedeutet "gleichschenklig" bei einem Dreieck und welche Bezeichnungen und äquivalenten Eigenschaften gibt es dazu?
#175
Ein Dreieck ist gleichschenklig, wenn zwei Seiten gleich lang sind. Folgende Bezeichnungen sind üblich:
  • Schenkel: die beiden Seiten, die gleich lang sind
  • Basis: Seite, von der beide Schenkel weggehen
  • Basiswinkel: Winkel, die an der Basis anliegen
  • Spitze: Ecke gegenüber der Basis
Äquivalent zu "gleichschenklig" sind die folgenden Eigenschaften:
  • achsensymmetrisch
  • zwei Winkel gleich groß (Basiswinkel)
Wie berechnet man die Winkel in einem gleichschenkligen Dreieck, wenn ein Winkel bekannt ist?
#176
In einem gleichschenkligen Dreieck sind die Basiswinkel gleich groß.
  • Kennt man den Basiswinkel, so erhält man den Winkel gegenüber der Basis, indem man von 180° das Doppelte des Basiswinkels abzieht.
  • Kennt man dagegen den Winkel gegenüber der Basis, so muss man diesen von 180° abziehen und das Ergebnis halbieren, um den Basiswinkel zu bestimmen.
Wie unterscheiden sich gleichseitige und gleichschenklige Dreiecke und welche Eigenschaften sind "gleichseitig" äquivalent?
#179
Ein spezielles gleichschenkliges Dreieck ist das gleichseitige Dreieck: Bei ihm sind nicht nur zwei, sondern alle drei Seiten gleich lang.

Äquivalent zu gleichseitig sind folgende Aussagen:

  • alle Winkel sind gleichgroß (jeweils 60°)
  • achsensymmetrisch bzgl. dreier unterschiedlicher Achsen