Hilfe
  • Ver-n-fachung des Radius bedeutet
    Ver-n-fachung des Umfangs und
    Ver-n²-fachung des Flächeninhalts.

    Radius und Durchmesser sind damit zueinander proportional, Radius (bzw. Umfang) und Flächeninhalt dagegen nicht.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Gegeben sind zwei Kreise k1 und k2 mit der angegebenen Beziehung. Vervollständige.

  • r
    1
    =
    ·
    r
    2
    u
    1
    =
    5
    ·
    u
    2
    A
    1
    =
    ·
    A
    2
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie beeinflusst die Verdoppelung oder Verdreifachung des Radius eines Kreises den Durchmesser, Umfang und die Fläche?
#472
Verdoppelt man den Radius eines Kreises, so verdoppeln sich auch sein Durchmesser und sein Umfang, dagegen vervierfacht sich seine Fläche (2² = 4).

Verdreifacht man den Radius eines Kreises, so verdreifachen sich auch sein Durchmesser und sein Umfang, dagegen verneunfacht sich seine Fläche (3² = 9)

Wie beeinflusst die Ver-n-fachung des Radius den Umfang und den Flächeninhalt eines Kreises?
#263

Ver-n-fachung des Radius bedeutet
Ver-n-fachung des Umfangs und
Ver-n²-fachung des Flächeninhalts.

Radius und Durchmesser sind damit zueinander proportional, Radius (bzw. Umfang) und Flächeninhalt dagegen nicht.

Beispiel
Gegeben sind zwei Kreise k1 und k2, von denen man weiß:
6u
1
=
u
2
Vervollständige damit die Gleichungen
r
1
=
?r
2
A
1
=
?A
2
Beispiel
Bestimme die Bogenlänge b und den Flächeninhalt A in Abhängigkeit von a.
graphik
Was sind Radius, Durchmesser, Umfang, Flächeninhalt eines Kreises und die Kreiszahl π?
#898
Rund um den Kreis gibt es mathematische Begriffe, die eindeutig definiert sind:
  • Der Radius r ist die Länge der Verbindungsstrecke des Kreismittelpunkts zu einem beliebigen Punkt der Kreislinie.
  • Der Durchmesser d ist die Länge der Verbindungsstrecke zweier Punkte der Kreislinie, die durch den Kreismittelpunkt verläuft.
  • Der Umfang u ist die Länge der Kreislinie.
  • Der Flächeninhalt A ist die Fläche, die von der Kreislinie begrenzt wird.
  • Die Kreiszahl π ist der Proportionalitätsfaktor zwischen Umfang und Durchmesser eines Kreises.
Beispiel
Kennzeichne jeweils in rot den Radius r, Durchmesser d, Umfang U und den Flächeninhalt A eines Kreises.
Was sind Kreisbogen, Kreissektor, Mittelpunktswinkel, Kreissehne und Kreissegment?
#899
Rund um Kreisteile gibt es mathematische Begriffe, die eindeutig definiert sind:
  • Ein Kreisbogen b ist ein Teil einer Kreislinie.
  • Ein Kreissektor ist durch zwei Radien und dem dazwischenliegenden Kreisbogen begrenzt.
  • Der Mittelpunktswinkel µ eines Kreissektors ist der Winkel, den die Radien einschließen.
  • Eine Kreissehne ist die Verbindungsstrecke zweier Punkte einer Kreislinie.
  • Ein Kreissegment wird durch eine Kreissehne und einen Kreisbogen begrenzt.
Beispiel
Kennzeichne jeweils in rot einen Kreisbogen b, Kreissektor, Mittelpunktswinkel μ, eine Kreissehne und ein Keissegment eines Kreises.