Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Bei jeder Prozentrechnung werden zwei Größen, der Grundwert (GW) und der Prozentwert (PW) miteinander verglichen. Der Prozentsatz (PS) drückt aus, wie groß der Prozentwert im Vergleich zum Grundwert ist.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Ordne die angegebenen Zahlen richtig zu (PS = Prozentsatz, GW = Grundwert, PW = Prozentwert).
  • Am Carl-Spitzweg-Gymnasium blieben im letzten Schuljahr 20 Schüler sitzen, das sind 2% aller Schüler.
    PS   
     
    GW   
     
    PW      
     
    20
    PS   
     
    GW   
     
    PW      
     
    2%
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Prozentrechnung (Teil 1)
Lernvideo

Prozentrechnung (Teil 1)

Kanal: Mathegym
Prozentrechnung (Teil 2)
Lernvideo

Prozentrechnung (Teil 2)

Kanal: Mathegym

Was zeigt der Prozentsatz in der Prozentrechnung an?
#127
Bei jeder Prozentrechnung werden zwei Größen, der Grundwert (GW) und der Prozentwert (PW) miteinander verglichen. Der Prozentsatz (PS) drückt aus, wie groß der Prozentwert im Vergleich zum Grundwert ist.
Beispiel
Ordne zu, was hier GW, PW und PS ist:
"Nachdem 25% der Teilnehmer eines Seminars gegangen sind, bleiben 17 Stühle leer. Wie viele Personen besuchen das Seminar?"
Was ist der Unterschied zwischen Anteil und Bruchteil und wie berechnet man den Anteil?
#463
Jedem Bruchteil (Zahl mit Einheit) kann ein Anteil (ausgedrückt als Bruch oder in Prozent) zugeordnet werden. Geht man z.B. von 600 g aus, so entspricht
  • der Bruchteil 300 g dem Anteil 1/2 bzw. 50%
  • der Bruchteil 150 g dem Anteil 1/4 bzw. 25%
  • der Bruchteil 60 g dem Anteil 1/10 bzw. 10%
Man erhält den Anteil, indem man den Bruchteil durch die Ausgangsgröße teilt. Durch Kürzen und Erweitern lässt sich evtl. ein Bruch mit Nenner 100 herstellen, so dass der Anteil in % ausgedrückt werden kann.
Beispiel
(a) In einer Teigmasse von 1,5 kg sind 250 g Zucker enthalten; das ist ein Anteil von ?%.
(b) Früher standen 12 Bäume im Garten, jetzt 18. Im Vergleich zu vorher sind das ?%.
Was bedeutet der Prozentsatz bei der Veränderung einer Größe?
#470
Jede Veränderung (Zunahme oder Abnahme) einer Größe kann in Prozent ausgedrückt werden. Nimmt man die ursprüngliche Größe als Grundwert, so drückt der Prozentsatz aus, wie groß die Größe im Vergleich zu damals (100%) ist.
Beispiel
Ordne jeweils richtig zu: Grundwert, Prozentsatz und Prozentwert.
(1) Arnie misst seinen Bizepsumfang und stellt fest, dass er nach 3 Monaten hartem Training auf 115% angewachsen ist. Wie groß war er vor drei Monaten, wenn er jetzt 39 cm beträgt?
(2) In einem bestimmten Landkreis betrug die Übertrittsquote ans Gymnasium in den 70iger Jahren 30%. Wie hoch ist sie inzwischen, wenn die Übertrittsquote seitdem um 200% gestiegen ist?
Was ist der Unterschied in der Berechnung zwischen '75% des Vorjahresgehalts' und '75% Steigerung zum Vorjahr'?
#57

Verändert sich eine Größe, so kann man die Veränderung in Prozent ausdrücken. Der Anfangswert ist dabei der Grundwert (100%), die Differenz der Prozentwert.

Vergleicht man zwei Größen (mit derselben Einheit) miteinander, so kann man den Unterschied ebenfalls in Prozent ausdrücken. Welche der beiden Größen der Grundwert (100%) ist, geht aus der Fragestellung hervor (Signalwort "als"), die Differenz der beiden Größen ist der Prozentwert.

Beispiel
Klassenstärke heuer: 30 SchülerInnen; letztes Jahr: 28 SchülerInnen; berechne den Zuwachs (= Differenz) in Prozent.
Wie vergleicht man Prozentsätze korrekt, z.B. bei Wahlresultaten?
#128
Auch Prozentsätze können sich verändern. Die Veränderung kann dann ebenfalls in Prozent ausgedrückt werden. Der ursprüngliche Prozentsatz ist dann der Grundwert, der neue Prozentsatz der Prozentwert.

Vorsicht: Verwechsle nicht % und ProzentPUNKTE (= Differenz zwischen beiden Prozentsätzen)!

Beispiel
Eine Partei hat bei der letzten Wahl 10% und bei dieser 15% der abgegebenen Stimmen erzielt. Um wie viel Prozent hat sie ihren Stimmanteil verbessern können?