Kreuze an, wenn fehlerhaft.

  •  
    1
    2
    3
     
    ×
     
    3
    2
    1
    =
    2
    6
    9
    1
    2
    6
     
    1
    2
    3
     
     
    3
    2
    1
    =
    3
    4
    3
    2
    ·
    3
    2
    1
    =
    6
    4
    2
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie berechnet man die Koordinaten des Produktvektors beim Vektorprodukt zweier Vektoren?
#619
Das Vektorprodukt (auch Kreuzprodukt genannt) zweier Vektoren ist wieder ein Vektor. Hat der erste Faktor die Koordinaten a1, a2 und a3 und der zweite die Koordinaten b1, b2 und b3, so ergeben sich die Koordinaten des Kreuzprodukts nach folgender Rechenvorschrift:

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

Beispiel
1
4
5
 
×
 
7
2
3
=
?
Wie ist die Lage des Vektorprodukts zweier Vektoren relativ zu diesen?
#621
Das Vektorprodukt zweier Vektoren steht zu diesen beiden senkrecht.
Beispiel
Gegeben sind die Vektoren
 
a
=
1
2
3
 
und
 
b
=
3
1
2
 
.
Bestimme jeweils einen Vektor
 
v
 
, der zu diesen beiden senkrecht steht und
(a) die Länge 3 besitzt.
(b) dessen dritte Koordinate den Wert 1 besitzt.