Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
7.1 Ähnliche Figuren, Matheübungen
Ähnlichkeit - Lehrwerk Fundamente der Mathematik (5.-9. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Beispielaufgabe
Zwei Figuren sind ähnlich, wenn sie in den jeweils entsprechenden Winkeln und allen Seitenverhältnissen entsprechender Seiten übereinstimmen. Dieses Verhältnis wird als Streckungsfaktor (oder Ähnlichkeitsfaktor) k bezeichnet; k drückt aus, wie lang die Seiten in Figur 2 im Vergleich zu den entsprechenden Seiten in Figur 1 sind. Z.B. bedeutet k=0,5, dass Figur 2 längenmäßig halb so groß wie Figur 1 ist.
Kennt man k, so kann man zu jeder Seitenlänge in Figur 1 durch Multiplikation mit k die entsprechende Seitenlänge in Figur 2 angeben.
Kennt man die Längen von zwei sich entsprechenden Seiten in Figur 1 und Figur 2, so kann man k durch Division der Seitenlängen "Figur 2 : Figur 1" bestimmen.
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Die abgebildeten Figuren sind ähnlich. Berechne die fehlenden Seitenlängen und gib die fehlenden Winkel an (Abbildungen nicht maßstabsgetreu).
Zwischenschritte aktivieren
a'
=
cm
b
=
cm
α
=
°
γ
=
°
α
'
=
°
β
'
=
°
γ
'
=
°
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
Stoff zum Thema
Was sind die Eigenschaften ähnlicher Dreiecke?
#708
Zwei Figuren sind ähnlich, wenn sie in den jeweils entsprechenden Winkeln und allen Seitenverhältnissen entsprechender Seiten übereinstimmen. Dieses Verhältnis wird als Streckungsfaktor (oder Ähnlichkeitsfaktor) k bezeichnet; k drückt aus, wie lang die Seiten in Figur 2 im Vergleich zu den entsprechenden Seiten in Figur 1 sind. Z.B. bedeutet k=0,5, dass Figur 2 längenmäßig halb so groß wie Figur 1 ist.
Kennt man k, so kann man zu jeder Seitenlänge in Figur 1 durch Multiplikation mit k die entsprechende Seitenlänge in Figur 2 angeben.
Kennt man die Längen von zwei sich entsprechenden Seiten in Figur 1 und Figur 2, so kann man k durch Division der Seitenlängen "Figur 2 : Figur 1" bestimmen.
Beispiel
Die beiden Figuren sind ähnlich. Berechne die fehlenden Seitenlängen und gib die fehlenden Winkel an (Abbildungen nicht maßstabsgetreu).
a
=
?
β
=
?
γ
=
?
b'
=
?
α
'
=
?
β
'
=
?
Titel
×
...
Schließen
Speichern
Abbrechen