Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Hier zwei alternative Vorgehensweisen, um den Abstand eines Punktes P von einer Geraden g zu bestimmen:

    Mittels Hilfsebene:

    1. Führe eine Hilfsebene E ein, die P enthält und senkrecht zu g verläuft (also den Richtungsvektor von g als Normalenvektor besitzt).
    2. Ermittle den Schnittpunkt S von E und g.
    3. Berechne die Entfernung zwischen P und S.

    Oder mit Hilfe des "Verbindungsvektors":

    1. Bilde den Vektor, der P mit einem Punkt Qλ der Geraden g verbindet.
    2. Bestimme λ so, dass der Verbindungsvektor senkrecht zu g steht (also das Skalarprodukt mit dem Richtungsvektor von g den Wert 0 ergibt).
    3. Berechne jetzt die Länge des senkrechten Verbindungsvektors.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie bestimmt man den Abstand eines Punktes zu einer Geraden? Erläutere zwei Methoden.
#601
Hier zwei alternative Vorgehensweisen, um den Abstand eines Punktes P von einer Geraden g zu bestimmen:

Mittels Hilfsebene:

  1. Führe eine Hilfsebene E ein, die P enthält und senkrecht zu g verläuft (also den Richtungsvektor von g als Normalenvektor besitzt).
  2. Ermittle den Schnittpunkt S von E und g.
  3. Berechne die Entfernung zwischen P und S.

Oder mit Hilfe des "Verbindungsvektors":

  1. Bilde den Vektor, der P mit einem Punkt Qλ der Geraden g verbindet.
  2. Bestimme λ so, dass der Verbindungsvektor senkrecht zu g steht (also das Skalarprodukt mit dem Richtungsvektor von g den Wert 0 ergibt).
  3. Berechne jetzt die Länge des senkrechten Verbindungsvektors.
Beispiel
Welchen Abstand hat der Punkt P(5|-3|2) von der Geraden g: 
X
=
2
0
4
+
λ
 
1
2
2
?