Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
7.3 Untersuchung von Verknüpfungen mit der ln-Funktion, Matheübungen
Natürliche Logarithmusfunktion - Lehrwerk Lambacher Schweizer (5.-13. Klasse) - 15 Aufgaben in 4 Levels
Hilfe
Hilfe zum Thema
h ( x ) =
G
h
geht aus G
f
hervor durch
f ( x + a )
Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a
Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0
Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x )
Spiegelung an der x-Achse
f ( a · x ), a > 0
Streckung mit Faktor 1/a in x-Richtung
f ( −x )
Spiegelung an der y-Achse
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 1
Wie muss die ln-Funktion abgewandelt werden, um zum abgebildeten Graphen zu passen?
f
x
=
ln
Ergebnis prüfen
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie kann eine Funktion f(x) abgewandelt werden, um ihren Graphen G
f
zu strecken, stauchen, verschieben oder zu spiegeln?
#488
h ( x ) =
G
h
geht aus G
f
hervor durch
f ( x + a )
Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a
Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0
Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x )
Spiegelung an der x-Achse
f ( a · x ), a > 0
Streckung mit Faktor 1/a in x-Richtung
f ( −x )
Spiegelung an der y-Achse
Beispiel
Gegeben ist die Funktion f mit
f
x
=
e
·
ln
x
x
2
und maximalem Definitionsbereich
D
f
. Der Graph von f wird mit
G
f
bezeichnet.
a) Gib
D
f
an.
b) Ermittle das Verhalten von f an den Rändern der Definitionsmenge.
c) Berechne alle Nullstellen von f.
d) Bestimme Lage und Art aller Extrempunkte von
G
f
.
e) Berechne f(8) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
0
<
x
≤
8
.
f) Gib die Wertemenge von f an.
Titel
×
...
Schließen
Speichern
Abbrechen