Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
7.6 Vermischte Aufgaben, Matheübungen
- Lehrwerk Fundamente der Mathematik (5.-9. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Achte darauf, dass beim Potenzieren eines Produkts (in der Klammer) jeder Faktor zu potenzieren ist!
Beispielaufgabe
Wird ein Produkt in Klammern potenziert, so ist beim Auflösen der Klammer darauf zu achten, dass jeder Faktor zu potenzieren ist (drittes Potenzgesetz rückwärts).
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Vereinfache. Brüche sind in der Form a/b und Variablen-Potenzen in der Form x^n anzugeben.
2
5
x
3
2
=
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Was ist eine Potenz, wie 4^3, und welche Begriffe sind damit verbunden? Was ergibt 4^0?
#726
Eine Potenz wie 4
3
ist eine Kurzschreibweise für das Produkt 4 · 4 · 4.
Die Zahl 4 heißt
Basis
oder Grundzahl. Die Basis ist die Zahl, die mit sich selbst multipliziert wird.
Die Zahl 3 heißt
Exponent
oder Hochzahl. Der Exponent gibt an, wie oft die Basis mit sich selbst multipliziert wird.
Allgemein gilt: a
n
= a · a · a ·... · a [n Faktoren]
Sonderfall: a
0
= 1
Beispiel
3
4
=
▇
3
−
4
=
▇
1
3
4
=
▇
1
3
−
4
=
▇
0,3
4
=
▇
3
4
=
▇
Was sind die fünf grundlegenden Potenzgesetze?
#539
Potenzgesetze:
Potenzen mit gleicher Basis werden multipliziert, indem man die Exponenten addiert und die Basis beibehält.
a
p
· a
q
= a
p + q
Potenzen mit gleicher Basis werden dividiert, indem man die Exponenten subtrahiert und die Basis beibehält.
a
p
: a
q
= a
p − q
Potenzen mit gleichen Exponenten werden multipliziert, indem man die Basen multipliziert und den Exponenten beibehält.
a
q
· b
q
= (a · b)
q
Potenzen mit gleichen Exponenten werden dividiert, indem man die Basen dividiert und den Exponenten beibehält.
a
q
: b
q
= (a : b)
q
Potenzen werden potenziert, indem man die Exponenten multipliziert.
(a
p
)
q
= a
p·q
Beispiel 1
Fasse zusammen:
35c
7
6d
2
:
7
c
2
d
5
Beispiel 2
Fasse jeweils zusammen:
(a)
6
7
:
6
3
(b)
2
5
:
6
5
Wie kann man die Gleichung T(x)^r = a lösen und wann gibt es keine Lösung?
#376
Sei T(x) ein beliebiger Term und r eine rationale Zahl. Die Gleichung
T(x)
r
= a
lässt sich (evtl.) lösen, indem man beide Seiten zunächst mit "1/r" potenziert. Dadurch erhält man:
T(x) = a
1/r
Keine Lösung erhält man z.B., wenn a negativ und r
eine gerade Zahl ist: x² = -1 (x² nie negativ)
eine echt rationale Zahl ist: x
1/3
= -1 (Ergebnis eines Wurzelterms nie negativ)
Beispiel
Löse die folgenden beiden Gleichungen:
1
3
x
+
1
−
3
4
=
8
3
x
2
−
2
=
−
1
2
Wie viele Lösungen hat die Gleichung x^n=a (n ∈ N) in Abhängigkeit von a und n?
#880
Die Gleichung x
n
=a (n ∈
N
)
hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
Beispiel
Löse, falls möglich:
a
x
4
=
−
5
b
x
4
=
5
c
x
3
=
5
d
x
3
=
−
5
e
x
3
=
0
Wie löst man eine potenzierte Klammer auf, wenn in der Klammer ein Produkt steht?
#1204
Wird ein Produkt in Klammern potenziert, so ist beim Auflösen der Klammer darauf zu achten, dass jeder Faktor zu potenzieren ist (drittes Potenzgesetz rückwärts).
Beispiel
2
3
a
2
b
3
=
?
Titel
×
...
Schließen
Speichern
Abbrechen