Zählt X die Anzahl der Treffer bei einem Bernoulli-Experiment, so ist X binomialverteilt.
Bei binomialverteilten Zufallsgrößen (Bernoullikette der Länge n und Trefferwahrscheinlichkeit p) ist zwischen "nicht kumuliert", also P(Z=k) und "kumuliert", also P(Z≤k), zu unterscheiden.
Berechnung von Wahrscheinlichkeiten mit dem GTR:
Gegeben: Bernoullikette der Länge n mit Trefferwahrscheinlichkeit p.
Wahrscheinlichkeit für GENAU k Treffer:
Wahrscheinlichkeit für HÖCHSTENS k Treffer:
Bei vielen Experimenten, z.B. Ziehen mehrerer Kugeln mit einem Griff oder hintereinander ohne Zurücklegen, liegt keine Bernoullikette vor, daher kommen hier andere Formeln zur Anwendung.
Wahrscheinlichkeit für GENAU r Treffer:
Wahrscheinlichkeit für HÖCHSTENS r Treffer:
Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!
Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.