Hilfe
  • Punkte, die auf der Symmetrieachse liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu symmetrischen Punkten gleich weit entfernt. D.h.
    • sind P und P´ zueinander achsensymmetrische Punkte und A ein beliebiger Punkt der Achse, so ist dieser zu P und P´gleich weit entfernt.
    • sind P und P´ zueinander achsensymmetrische Punkte und von A gleich weit entfernt, so muss A auf der Spiegelachse liegen.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
TIPP GeoGebra: Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen. Klicke unten rechts auf das orange GeoGebra-Symbol, um die Aufgabe mit Hilfe von GeoGebra zu bearbeiten.

Konstruiere mit Zirkel und Lineal:

  • Das Lot zur Geraden AB im Punkt B.
    graphik
    Auswahl an Konstruktionsschritten:
    1. Kreis um B, Schnittpunkte C und D mit AB
    2. Kreis um A, Schnittpunkte C und D mit AB
    3. Kreis um C
    4. Kreis um D
    5. gleich große Kreise um C und D
    6. gleich große Kreise um A und B
    Eine der folgenden Kombinationen führt zum Ergebnis:
    6+1+3+4
    1+3+4
    2+5
    1+5
    GeoGebra
    GeoGebra
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
  • Konstruiere das Lot zur Geraden AB im Punkt B.
  • Wenn du mit der Konstruktion fertig bist, scrolle zurück nach oben und gib bei der Aufgabe das passende Ergebnis ein.
Zum Ändern der Größe gestrichelte Linie ziehen
Wie erkennt man eine achsensymmetrische Figur und ihre Symmetrieachsen?
#575
Eine Symmetrieachse erkennt man daran: Würde man die Figur entlang der Achse falten, wären die aufeinandergelegten Figurenhälften deckungsgleich.

Präziser: Jede Verbindungsstrecken zwischen Punkt und Spiegelpunkt steht senkrecht zur Achse und wird von ihr halbiert.

Eine Figur kann auch mehrere Symmetrieachsen besitzen. Figuren mit mindestens einer Symmetrieachse nennt man achsensymmetrisch.

Wann liegen zwei Punkte symmetrisch zu einer Achse?
#501
Zwei Punkte P und P´ liegen symmetrisch bzgl der Achse a, wenn ihre Verbindungsstrecke senkrecht auf der zur Achse a steht und von dieser halbiert wird.
Beispiel
Das Dreieck ABC soll an der Achse a gespiegelt werden:
graphik
Was gilt für achsensymmetrische Strecken, Winkel, Figuren bzgl. ihres Umlaufsinns und Geraden?
#769
P und P´ sind symmetrisch bzgl. der Achse a, wenn ihre Verbindungsstrecke PP´ senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische...
  • ...Strecken sind gleich lang
  • ...Winkel sind gleich groß
  • ...Figuren haben umgekehrten Umlaufsinn, z.B. ABC und C´B´A´
  • ...Geraden sind parallel oder schneiden sich auf der Achse
Wie erkennt man eine punktsymmetrische Figur und was ist ein Symmetriezentrum?
#574
Eine punktsymmetrische Figur erkennt man daran: Es gibt einen Punkt (Symmetriezentrum), durch den alle Verbindungsstrecken laufen, die jeweils Punkt und Spiegelpunkt miteinander verbinden. Die Verbindungsstrecken werden durch diesen Punkt halbiert.
Welche einzigartige Eigenschaft besitzen Punkte auf der Symmetrieachse bezüglich eines Punkts P und seines Spiegelpunkts P´?
#385
Punkte, die auf der Symmetrieachse liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu symmetrischen Punkten gleich weit entfernt. D.h.
  • sind P und P´ zueinander achsensymmetrische Punkte und A ein beliebiger Punkt der Achse, so ist dieser zu P und P´gleich weit entfernt.
  • sind P und P´ zueinander achsensymmetrische Punkte und von A gleich weit entfernt, so muss A auf der Spiegelachse liegen.
Beispiel 1
Gegeben sind die Punkte P und P'. Gesucht ist die Spiegelachse a, die P auf P' abbildet.
graphik
Beispiel 2
Der Punkt P soll an der Achse a gespiegelt werden.
graphik
Beispiel 3
Ein Winkel soll halbiert werden.
graphik
Beispiel 4
(A) Von P aus soll ein Lot auf g gefällt werden (P ∉ g).
graphik
(B) Im Punkt P soll ein Lot zur Geraden g errichtet werden (P ∈ g).
graphik
Was ist die Eigenschaft von punktsymmetrischen Punkten bezüglich eines Zentrums?
#387
Sind zwei Punkte P und P´ punktsymmetrisch bzgl. eines Zentrums Z, so wird ihre Verbindungsstrecke von Z halbiert.
Beispiel 1
Der Punkt P soll am Zentrum Z gespiegelt werden.
graphik
Beispiel 2
Gegeben sind die Punkte P und P´. Konstruiere das Zentrum Z der Punktspiegelung, die P auf P´ abbildet.
graphik