Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Ähnlichkeit, Matheübungen
Ähnlichkeit erkennen und Größen in ähnlichen Figuren berechnen - Lehrplan für 5.-13. Klasse - 16 Aufgaben in 3 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Hilfe zum Thema
Zwei Dreiecke können unterschiedlich groß sein und doch ähnlich aussehen, weil sie dieselben Proportionen (Seitenverhältnisse) haben.
Ähnlich
sind zwei Dreiecke dann, wenn sie ... übereinstimmen.
im Längenverhältnis sich entsprechender Seiten (S:S:S-Satz)
in zwei Winkeln (W:W-Satz)
in einem Winkel und dem Längenverhältnis der anliegenden Seiten (S:W:S-Satz)
im Längenverhältnis zweier sich entsprechender Seiten und dem Winkel gegenüber der längeren Seite (S:s:W-Satz)
Der Satz gilt auch in umgekehrter Richtung, d.h. in zueinander ähnlichen Dreiecken trifft jede der aufgeführten Übereinstimmungen zu.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 3
Berechne mit Hilfe ähnlicher Dreiecke und gib als Bruch an.
Zwischenschritte aktivieren
x
=
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema
Stoff zum Thema anzeigen
Was sind die Eigenschaften ähnlicher Dreiecke?
#708
Zwei Figuren sind ähnlich, wenn sie in den jeweils entsprechenden Winkeln und allen Seitenverhältnissen entsprechender Seiten übereinstimmen. Dieses Verhältnis wird als Streckungsfaktor (oder Ähnlichkeitsfaktor) k bezeichnet; k drückt aus, wie lang die Seiten in Figur 2 im Vergleich zu den entsprechenden Seiten in Figur 1 sind. Z.B. bedeutet k=0,5, dass Figur 2 längenmäßig halb so groß wie Figur 1 ist.
Kennt man k, so kann man zu jeder Seitenlänge in Figur 1 durch Multiplikation mit k die entsprechende Seitenlänge in Figur 2 angeben.
Kennt man die Längen von zwei sich entsprechenden Seiten in Figur 1 und Figur 2, so kann man k durch Division der Seitenlängen "Figur 2 : Figur 1" bestimmen.
Beispiel
Die beiden Figuren sind ähnlich. Berechne die fehlenden Seitenlängen und gib die fehlenden Winkel an (Abbildungen nicht maßstabsgetreu).
a
=
?
β
=
?
γ
=
?
b'
=
?
α
'
=
?
β
'
=
?
Was sind die Erkennungsmerkmale ähnlicher Dreiecke?
#439
Zwei Dreiecke können unterschiedlich groß sein und doch ähnlich aussehen, weil sie dieselben Proportionen (Seitenverhältnisse) haben.
Ähnlich
sind zwei Dreiecke dann, wenn sie ... übereinstimmen.
im Längenverhältnis sich entsprechender Seiten (S:S:S-Satz)
in zwei Winkeln (W:W-Satz)
in einem Winkel und dem Längenverhältnis der anliegenden Seiten (S:W:S-Satz)
im Längenverhältnis zweier sich entsprechender Seiten und dem Winkel gegenüber der längeren Seite (S:s:W-Satz)
Der Satz gilt auch in umgekehrter Richtung, d.h. in zueinander ähnlichen Dreiecken trifft jede der aufgeführten Übereinstimmungen zu.
Titel
×
...
Schließen
Speichern
Abbrechen