Hilfe
  • Die Graphen mancher Funktionen weisen an bestimmten Stellen ihrer Definitionsmenge Sprünge auf. Man nennt die Funktion dann an solchen Stellen unstetig (ansonsten stetig). Ist eine Funktion an jeder definierten Stelle stetig, so nennt man sie (insgesamt) stetig.

    Bei den bisher behandelten Funktionstypen (ganzrational, gebrochen-rational, exponentiell, trigonometrisch) handelt es sich um stetige Funktionen. Dagegen ist z.B. die Rundungsfunktion, die jeder reellen Zahl den auf Ganze gerundeten Wert zuordnet, nicht stetig (siehe Abbildung).

    Erläuterung: "Knödel" und "Kringel" verdeutlichen, ob der jew. Punkt zum Graphen G gehört oder nicht. Z.B. gilt (0,5|0) ∉ G, aber (0,5|1) ∈ G (weil bei 0,5 auf 1 aufgerundet wird).

Kreuze zutreffende Aussagen an. Mehrfachauswahl möglich! Evtl. stimmt auch keine der beiden Aussagen.

  • Ist die Funktion f an einer Stelle 
    x
    =
    x
    0
     stetig, so weist ihr Graph an dieser Stelle keinen Sprung auf.
    Ist die Funktion f stetig, so lässt sich ihr Graph mit dem Stift zeichnen, ohne dass man auch nur einmal absetzen muss.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Aufgaben passend zu deinem Lehrplan

Tipp: Wähle deine Schule/Bundesland, und wir zeigen dir genau die Aufgaben an, die für deinen Lehrplan vorgesehen sind.

Lehrplan wählen
Die Graphen mancher Funktionen weisen an bestimmten Stellen ihrer Definitionsmenge Sprünge auf. Man nennt die Funktion dann an solchen Stellen unstetig (ansonsten stetig). Ist eine Funktion an jeder definierten Stelle stetig, so nennt man sie (insgesamt) stetig.

Bei den bisher behandelten Funktionstypen (ganzrational, gebrochen-rational, exponentiell, trigonometrisch) handelt es sich um stetige Funktionen. Dagegen ist z.B. die Rundungsfunktion, die jeder reellen Zahl den auf Ganze gerundeten Wert zuordnet, nicht stetig (siehe Abbildung).

Erläuterung: "Knödel" und "Kringel" verdeutlichen, ob der jew. Punkt zum Graphen G gehört oder nicht. Z.B. gilt (0,5|0) ∉ G, aber (0,5|1) ∈ G (weil bei 0,5 auf 1 aufgerundet wird).

Funktionen können auch durch mehrere Funktionsterme definiert sein, die jeweils in bestimmten Abschnitten der Gesamtdefinitionsmenge gelten. Man spricht von abschnittsweise definierten Funktionen.

Bei solchen Funktionen können an den Nahtstellen, also dort, wo die Abschnitte aufeinandertreffen, Unstetigkeitsstellen auftreten. Um die Funktion an einer Nahtstelle auf Stetigkeit zu überprüfen, setzt man diese in die Funktionsterme der beiden angrenzenden Abschnitte ein. Ergeben sich unterschiedliche Termwerte, so liegt eine Unstetigkeitsstelle vor. Ansonsten ist die Funktion dort stetig.

Beispiel 1
Überprüfe auf Stetigkeit.
f
 
x
=
3x
+
1
7
    
 
 
für x
 
<
 
4
1
x
3
+
2
    
für
4
 
 
x
 
<
 
3
x
2
9
    
    
 
 
für x
 
 
3
Beispiel 2
Ergänze zu einer in ganz ℝ definierten stetigen Funktion.
f
 
x
=
x
3
x
    
    
für x
 
 
2x
2
+
2x
    
für
 
 
<
 
x
 
 
0
x
+
1
+
2
    
für x
 
>
 
0