Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Asymptote bei Exponentialfunktionen vom Typ f(x) = a ekx+b
    • Die Gleichung der Asymptote lautet y = b.
    • Wenn k positiv ist, schmiegt sich der Graph von f nach links an die Asymptote.
    • Wenn k negativ ist, schmiegt sich der Graph von f nach rechts an die Asymptote.

Der Graph einer Exponentialfunktionen vom Typ f(x) = a ekx+b hat die Asymptote g und geht durch die beiden Punkte P und Q. Berechne die Parameter a, k und b. Ergebnis(se) falls erforderlich auf die 2. Dezimalstelle gerundet eingeben!

Asymptote g:
 
y
=
3
P(0|2), Q(-1|0)
a
=
k
 
 
b
=
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Lernvideo
exp(x) | Graph verändern durch Verschiebung und Spiegelung

Asymptote bei Exponentialfunktionen vom Typ f(x) = a ekx+b
  • Die Gleichung der Asymptote lautet y = b.
  • Wenn k positiv ist, schmiegt sich der Graph von f nach links an die Asymptote.
  • Wenn k negativ ist, schmiegt sich der Graph von f nach rechts an die Asymptote.

Regeln zur Transformation von Graphen

Der Graf einer Funktion f wird
  • ... an der x-Achse gespiegelt: Minus vor den Term, d.h. g(x) = - f(x)
  • ... an der y-Achse gespiegelt : x durch (-x) ersetzen, d.h. g(x) = f(-x)
  • ... um b in y-Richtung verschoben: b zum Term addieren, d.h. g(x) = f(x) +b